Features

- Fast Read Access Time 70 ns
- **Dual Voltage Range Operation**

Unregulated Battery Power Supply Range, 2.7V to 3.6V or Standard 5V ± 10% Supply Range

- Compatible with JEDEC Standard AT27C010
- **Low Power CMOS Operation**

20 μ A max. (less than 1 μ A typical) Standby for V_{CC} = 3.6V 29 mW max. Active at 5 MHz for V_{CC} = 3.6V

- **JEDEC Standard Packages**
 - 32-Lead PLCC
 - 32-Lead TSOP
- **High Reliability CMOS Technology**
 - 2,000V ESD Protection
 - 200 mA Latchup Immunity
- Rapid[™] Programming Algorithm 100 µs/byte (typical)
- **CMOS and TTL Compatible Inputs and Outputs**
 - JEDEC Standard for LVTTL and LVBO
- **Integrated Product Identification Code**
- **Commercial and Industrial Temperature Ranges**

Description

The AT27BV010 is a high performance, low power, low voltage 1,048,576 bit onetime programmable read only memory (OTP EPROM) organized as 128K by 8 bits. It requires only one supply in the range of 2.7V to 3.6V in normal read mode operation, making it ideal for fast, portable systems using either regulated or unregulated battery power.

Atmel's innovative design techniques provide fast speeds that rival 50 parts while keeping the low power consumption of a 3V supply. At $V_{CC} \neq 2.7V$, any byte can be accessed in less than 70 ns. With a typical power draw of prly 18 mW at 5 MHz and V_{CC} = 3V, the AT27BV010 consumes less than one fifth the power of a standard 5V

Pin Configurations

Pin Name	Function
A0 - A16	Addresses
O0 - O7	Outputs
CE	Chip Enable
ŌE	Output Enable
PGM	Program Strobe
NC	No Connect

O2 O3 O5 O1 GND O4 O6

TSOP Top View Type 1 PLCC Top View A12 A16 VC<u>C N</u>C OE A15 VPP PGM A10 CE 30 8A 07 A13 29 28 06 О5 NC PGM 04 26 VCC О3 GND 24 02 10 A16 22 01 A12 12 21 00 22 20 Α0 14 19 Α1 Α6 16 ¹⁵ A5 18

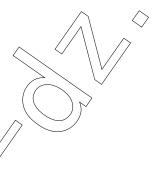
1 Megabit (128K x 8) Unregulated Battery-Voltage **OTP CMOS EPROM**

(continued)

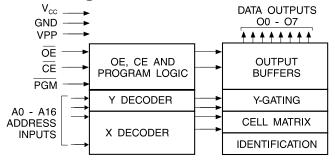
0344E

Description (Continued)

EPROM. Standby mode supply current is typically less than 1 μ A at 3V. The AT27BV010 simplifies system design and stretches battery lifetime even further by eliminating the need for power supply regulation.


The AT27BV010 is available in industry standard JEDEC-approved one-time programmable (OTP) plastic PLCC and TSOP packages. All devices feature two-line control (CE, OE) to give designers the flexibility to prevent bus contention.

The AT27BV010 operating with V_{CC} at 3.0V produces TTL level outputs that are compatible with standard TTL logic devices operating at V_{CC} = 5.0V. At V_{CC} = 2.7V, the part is compatible with JEDEC approved low voltage battery operation (LVBO) interface specifications. The device is also capable of standard 5-volt operation making it ideally suited for dual supply range systems or card products that are pluggable in both 3-volt and 5-volt hosts.


Atmel's AT27BV010 has additional features to ensure high quality and efficient production use. The Rapid[™] Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100 μs/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages. The AT27BV010 programs exactly the same way as a standard 5V AT27C010 and uses the same programming equipment.

System Considerations

Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed data sheet limits, resulting in device non-conformance. At a minimum, a 0.1 μ F high frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the V_{CC} and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be utilized, again connected between the V_{CC} and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias-40°C to +85°C

Storage Temperature-65°C to +125°C

Voltage on Any Pin with Respect to Ground-2.0V to +7.0V (1)

Voltage on A9 with Respect to Ground2.0V to +14.0V (1)

VPP Supply Voltage with Respect to Ground2.0V to +14.0V (1)

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note: 1 Minimum voltage is -0.6V dc which may undershoot to 2.0V for pulses of less than 20 ns. Maximum output pin voltage is Vcc + 0.75V dc which may be exceeded if certain precautions are observed (consult application notes) and which may overshoot to +7.0V for pulses of less than 20 ns.

Operating Modes

Mode \ Pin	CE	ŌE	PGM	Ai	V_{PP}	Vcc	Outputs
Read (2)	۷̈́IL	VIL	X ⁽¹⁾	Ai	Х	Vcc (2)	Dout
Output Disable (2)	X	⟨¥ıн	Χ	Χ	Χ	Vcc (2)	High Z
Standby (2)	KHH/	X	Χ	Χ	Χ	Vcc (2)	High Z
Rapid Program (3)	YAL \	Vih	VIL	Ai	V_{PP}	Vcc (3)	DIN
PGM Verify (3)	VIL	V_{IL}	VIH	Ai	V_{PP}	Vcc (3)	Dout
PGM Inhibit (3)	√\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X	Χ	Χ	V_{PP}	Vcc (3)	High Z
Product Identification	(3,5) VIL	V_{IL}	Х	A9 = VH ⁽⁴⁾ A0 = V _{IH} or V _{IL} A1 - A16 = V _{IL}	Х	Vcc (3)	Identification Code

Notes: 1. X can be VIL or VIN.

- 2. Read, output disable, and standby modes require, $2.7V \le V_{CC} \le 3.6V$, or $4.5V \le V_{CC} \le 5.5V$.
- Refer to Programming Characteristics.
 Programming modes require V_{CC} = 6.5V.
- 4. $V_H = 12.0 \pm 0.5 V$.
- 5. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}), except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

DC and AC Operating Conditions for Read Operation

		AT27BV010						
		-70	-90	-12	-15			
Operating Temperature	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C			
(Case)	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C			
V Davier County		2.7V to 3.6V	2.7V to 3.6V	2.7V to 3.6V	2.7V to 3.6V			
Vcc Power Supply		5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%			

DC and Operating Characteristics for Read Operation

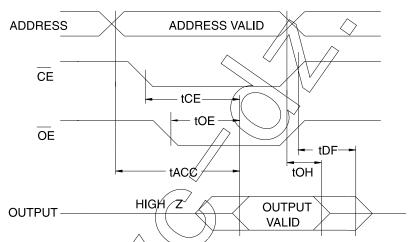
Symbol Parameter Min Units Condition Max $V_{CC} = 2.7V \text{ to } 3.6V$ Input Load Current $V_{IN} = 0V$ to V_{CC} ILL ±1 μΑ **Output Leakage Current** $V_{OUT} = 0V$ to V_{CC} ILO ±5 μΑ I_{PP1} (2) V_{PP} ⁽¹⁾ Read/Standby Current $V_{PP} = V_{CC}$ 10 μA Isb1 (CMOS), $\overline{CE} = V_{CC} \pm 0.3 \text{V}$ 20 иΑ V_{CC} ⁽¹⁾ Standby Current ISB I_{SB2} (TTL), $\overline{CE} = 2.0$ to $\sqrt{c} + 0.5 \sqrt{}$ 100 μA f = 5 MHz, $I_{OUT} = 0 \text{ mA}$, $\overline{QE} = V_{IL}$, $V_{CC} = 3.6 \text{ V}$ V_{CC} Active Current 8 mΑ **Icc** $V_{CC} = 3.0 \text{ to } 3.6 \text{V}$ -0.6 0.8 V VII Input Low Voltage $V_{CC} = 2.7 \text{ to } 3.6 \text{V}$ -0.6 0.2 x Vcc V $V_{CC} = 3.0 \text{ to } 3.6 \text{V}/$ Vcc + 0.5٧ 2.0 Input High Voltage V_{IH} $V_{CC} = 2.7 \text{ to } 3.6 \text{V}$ 0.7 x V_{CC} V_{CC} + 0.5 V $I_{OI} = 2.0 \text{ mA}$ 0.4 ٧ Vol **Output Low Voltage** $IOL = 1/00 \mu A$ 0.2 ٧ $I_{OL} = 20 \mu A$ ٧ 0.1 IOH = -2.0 mA 2.4 V Vон Output High Voltage $A\mu 00f = HOF$ ٧ Vcc - 0.2 I_{OH} = -20 µA Vcc - 0.1 V $V_{CC} = 4.5V \text{ to } 5.5V$ Input Load Current $V_{IN} = 0V$ to V_{CC} ILI ±1 μΑ Output Leakage Current ILO Vout = 0V to Vcc ±5 μΑ IPP1 (2) V_{PP} (1) Read/Standby Current $V_{PP} = V_{CC}$ 10 μΑ I_{SB1} (CMOS), $\overline{CE} = V_{CC} \pm 0.3V$ 100 μΑ V_{CC} ⁽¹⁾ Standby Current ISB I_{SB2} (TTL), $\overline{CE} = 2.0$ to V_{CC} + 0.5V 1 mA Vcc Active/Current $f = 5 \text{ MHz}, I_{OUT} = 0 \text{ mA}, \overline{CE} = V_{IL}$ 25 mΑ Icc Input Low Voltage ٧ V_{IL} -0.6 8.0 Input High Voltage 2.0 $V_{CC} + 0.5$ ٧ V_{IH} Output Low Voltage Vol IOL = 2.1 mA0.4 ٧ Output High Voltage $IOH = -400 \mu A$ 2.4 Vон

Notes: 1. V_{CC} must be applied simultaneously with or before V_{PP}, and removed simultaneously with or after V_{PP}.

Prefiminary Information

V_{PP} may be connected directly to V_{CC}, except during pro gramming. The supply current would then be the sum of I_{CC} and I_{PP}.

AC Characteristics for Read Operation ($V_{CC} = 2.7V$ to 3.6V and 4.5V to 5.5V)


			AT27BV010				
			-70	-90	-12	-15	
Symbol	Parameter	Condition	Min Max	Min Max	Min Max	Min Max	Units
t _{ACC} (3)	Address to Output Delay	$\overline{CE} = \overline{OE} = V_{IL}$	70	90	120	150	ns
tcE (2)	CE to Output Delay	$\overline{OE} = VIL$	70	90	< √ (20	150	ns
toE (2, 3)	OE to Output Delay	$\overline{CE} = V_{IL}$	50	50	50	60	ns
t _{DF} (4, 5)	OE or CE High to Output Float, which	ever occurred first	40	40	40	50	ns
toH	Output Hold from Address, $\overline{\text{CE}}$ or $\overline{\text{OE}}$, whichever occurred first		0	0	0	0	ns

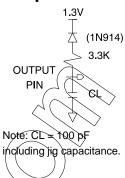
Notes:

2, 3, 4, 5. - see AC Waveforms for Read Operation.

= Preliminary Information

AC Waveforms for Read Operation (1)

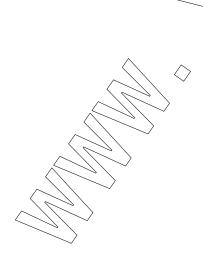
- Notes: 1. Timing measurement references are 0.8 Vand 2.0 V. Input AC drive levels are 0.45V and 2.4V, unless otherwise specified.
 - 2. OE may be delayed up to tce toe after the falling edge of $\overline{\text{CE}}$ without impact on t_{CE} .
 - 3. OE may be delayed up to tACC tOE after the address is valid without impact on tACC.
- 4. This parameter is only sampled and is not 100% tested.
- 5. Output float is defined as the point when data is no longer driven.

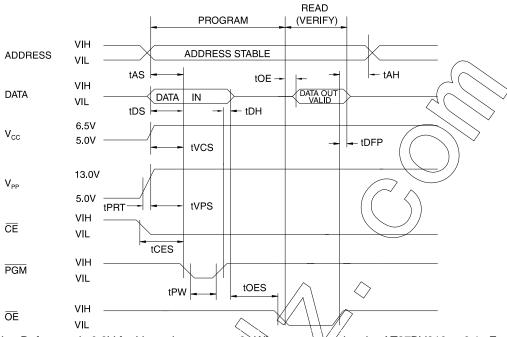


Input Test Waveform and Measurement Level

AC DRIVING LEVELS 0.45V 2.0 AC MEASUREMENT LEVEL

 t_R , t_F < 20 ns (10% to 90%)


Output Test Load


Pin Capacitance (f = 1 MHz, T = 25°C) (1)

	Тур	Max	Units	Conditions
CIN	4	8	pF ∧	$V_{IN} = 0V$
Соит	8	12	/pH	V _{OUT} = 0V

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms (1)

Notes: 1. The Input Timing Reference is 0.8V for V_{IL} and 2.0V for $V_{IH}.$

2. t_{OE} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.

3. When programming the AT27BV010, a 0.1 μF capacitor is required across V_{PP} and ground to suppress spurious voltage transients.

DC Programming Characteristics

 T_{A} = 25 $\pm~$ 5°C, V_{CC} = 6.5 $\pm~$ 0.25V, V_{PP} = 13.0 $\pm~$ 0.25V

		Test	Li		
Symbol	Parameter	Conditions	Min	Max	Units
ILI	Input Load Current	$V_{IN} = V_{IL}, \ V_{IH}$		±10	μΑ
VIL	Input Low Level		-0.6	0.8	V
VIH	Input High Level		2.0	V _{CC} + 1	V
V_{OL}	Output Low Voltage	$I_{OL} = 2.1 \text{ mA}$		0.4	V
VoH	Output High Voltage	$I_{OH} = -400 \mu A$	2.4		V
ICC2	V _{CC} Supply Current (Program and Verify)			40	mA
I _{PP2}	V _{PP} Supply Current	$\overline{CE} = \overline{PGM} = V_{IL}$		20	mA
V _{ID}	A9 Product Identification Voltage		11.5	12.5	V

AC Programming Characteristics

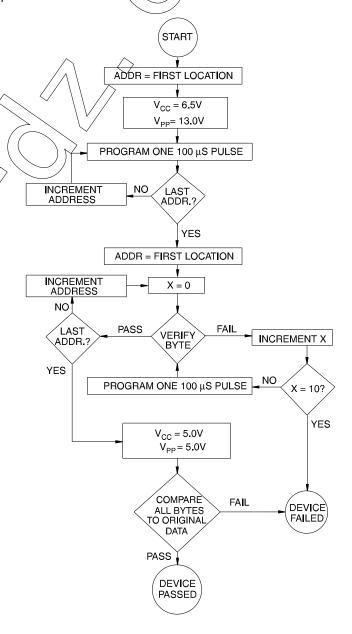
 $T_A = 25 \pm 5$ °C, $V_{CC} = 6.5 \pm 0.25$ V, $V_{PP} = 13.0 \pm 0.2$ V

Sym-		Test Conditions* (1)		Limits		
bol Parameter		Conditions	Min	Max	Units	
tas	Address Setup Ti	me	2		μS	
tces	CE Setup Time		2		μS	
toes	OE Setup Time		2		μS	
t _{DS}	Data Setup Time		2		μS	
tah	Address Hold Tim	ne	0		μS	
t _{DH}	Data Hold Time		2		μS	
t _{DFP}	OE High to Output Float Delay)	0	130	ns	
tvps	V _{PP} Setup Time		2		μS	
tvcs	V _{CC} Setup Time		2		μS	
tpw	PGM Program Po	ulse Width ⁽³⁾	95	105	μS	
toE	Data Valid from C	DE		150	ns	
tprt	V _{PP} Pulse Rise Ti Programming	ime During	50		ns	

*AC Conditions of Test:

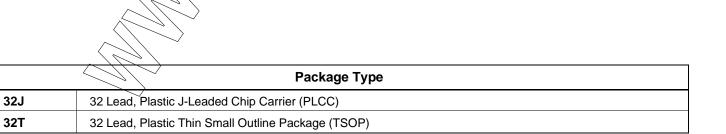
Input Rise and Fall Times (10% to 9)	90%)20 ns
Input Pulse Levels	0.45V to 2.4V
Input Timing Reference Level	0.8V to 2,0V
Input Timing Reference Level Output Timing Reference Level	0.8V to∕2,∕0∀

- Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
 - 2. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven —see timing diagram.
 - 3. Program Pulse width tolerance is 100 μ sec \pm 5%.


Atmel's 27BV010 Integrated Product Identification Code

		Rins					Hex		
Codes	A0	07 <u>(</u>	05	04	Ø 3	O2	01	00	Data
Manufacturer	0	0	Q Q	\bigcirc	1	1	1	0	1E
Device Type	1	(0,	0/0	0	0	1	0	1	05

1. The AT27BV010 has the same Product Identification Note: Code as the AT27C010. Both are programming compatible.


Rapid Programming Algorithm

A 100 us PGM pulse width is used to program. The address is set to the first location. VCC is raised to 6.5V and V_{PP} is raised to 13.0V. Each address is first programmed with one 100 μs PGM pulse without verification. Then a verification / reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100 μs pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. VPP is then lowered to 5.0V and Vcc to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

Ordering Information

tacc (mA) Vcc = 3.6V		(mA) = 3.6V	Ordering Code	Package	Operation Range		
(113)	Active	Standby					
70	8	0.02	AT27BV010-70JC AT27BV010-70TC	32J 32T	Commercial (0°C to 70°C)		
8		0.02	AT27BV010-70JI AT27BV010-70TI	32J 32T	Industrial (-40°C to 85°C)		
90	8	0.02	AT27BV010-90JC AT27BV010-90TC	32J 32T	Commercial (0°C to 70°C)		
	8	0.02	AT27BV010-90JI AT27BV010-90TI	32J 32T	Industrial (-40°C to 85°C)		
120	8	0.02	AT27BV010-12JC AT27BV010-12TC	32J 32T	Commercial (0°C to 70°C)		
	8	0.02	AT27BV010-12JI AT27BV010-12TI	32J 32T	Industrial (-40°C to 85°C)		
150	8	0.02	AT27BV010-15JC AT27BV010-15TC	32J 321	Commercial (0°C to 70°C)		
	8	0.02	AT27BV010-15JI AT27BV010-15TI	32U 32T	Industrial (-40°C to 85°C)		

= Preliminary Information