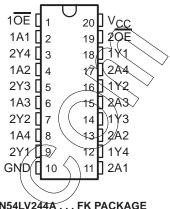
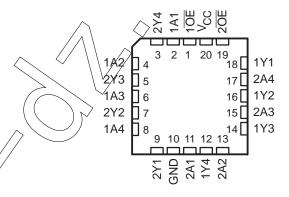
SCLS383B - SEPTEMBER 1997 - REVISED JUNE 1998

- EPIC ™ (Enhanced-Performance Implanted CMOS) Process
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC}, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 2 V at V_{CC}, T_A = 25°C
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include Plastic Small-Outline (DW, NS), Shrink Small-Outline (DB), Thin Very Small-Outline (DGV), and Thin Shrink Small-Outline (PW) Packages, Ceramic Flat (W) Packages, Chip Carriers (FK), and DIPs (J)

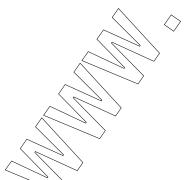


These octal buffers/line drivers are designed for 2-V to 5.5-V V_{CC} operation.


The 'LV244A devices are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

These devices are organized as two 4-bit line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

SN54LV244A . . . J OR W PACKAGE SN74LV244A . . . DB, DGV, DW, NS, OR PW PACKAGE (TOP VIEW)



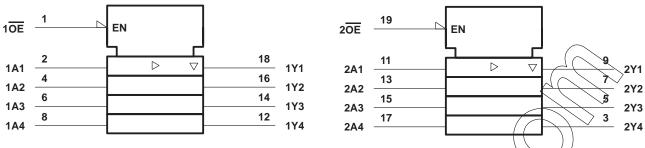
SN54LV244A . . . FK PACKAGE (TOP VIEW)

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54LV244A is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74LV244A is characterized for operation from –40°C to 85°C.

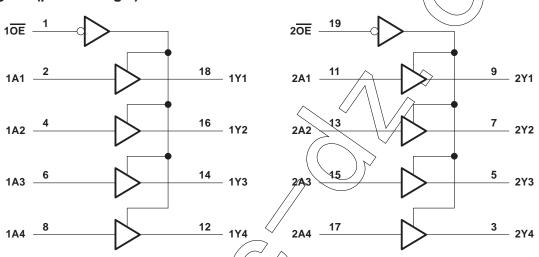
FUNCTION TABLE (each buffer)

INPU	JTS	OUTPUT					
OE	Α	Y					
L	Н	Н					
L	L	L					
Н	Χ	Z					



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.



logic symbol†

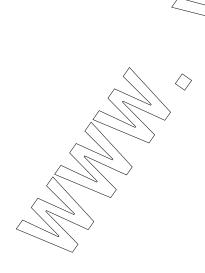
[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}		–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	,	0.5 V to 7 V
Output voltage range applied in the high or low	state, VO (see Notes 1 and 2)	-0.5 V to $V_{CC} + 0.5 \text{ V}$
Output voltage range applied in high-impedance	e or power-off state, VO (see Note 1)	–0.5 V to 7 V
Input clamp current, I _{IK} (V _I < 0)	×	–20 mA
Output clamp current, I_{OK} (V_{Q} < 0 or V_{O} > V_{CO}		
Continuous output current, $I_O(V_O = 0)$ to V_{CC}		±35 mA
Continuous current through VCC or GND		
Package thermal impedance, OJA (see Note 3):	: DB package	115°C/W
	DGV package	146°C/W
	DW package	97°C/W
	NS package	100°C/W
	PW package	128°C/W
Storage temperature range, T _{stg}		–65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.


- NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. This value is limited to 7 V maximum.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MAX 5.5	V	
$V_{\text{IH}} \text{High-level input voltage} \begin{array}{c ccccccccccccccccccccccccccccccccccc$		V	
$V_{\text{IH}} \qquad \text{High-level input voltage} \qquad \frac{V_{\text{CC}} = 2.3 \text{ V to } 2.7 \text{ V}}{V_{\text{CC}} = 3 \text{ V to } 3.6 \text{ V}} \qquad \frac{V_{\text{CC}} \times 0.7}{V_{\text{CC}} \times 0.7} \qquad \frac{V_{\text{CC}} \times 0.7}{V_{CC$			
VIH High-level input voltage $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	/		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		V	
		ľ	
V _{CC} = 2 V 0.5			
	0.5		
V_{II} Low-level input voltage $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ $V_{CC} \times 0.3$	$V_{CC} \times 0.3$	V	
V_{IL} Low-level input voltage $V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	$V_{CC} \times 0.3$	\ \ \	
$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ $V_{CC} \times 0.3$	$V_{CC} \times 0.3$		
V _I Input voltage 0 5.5 0	5.5	V	
Vo Output voltage High or low state 0 0 0	Vcc	V	
VO Output voltage 3-state 0 5.5 0	5.5	l	
V _{CC} = 2 V -50	-50	μΑ	
$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-2		
IOH High-level output current VCC = 3 V to 3.6 V -8	-8	mA	
$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	-16		
V _{CC} = 2 V 50	50	μΑ	
$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	2		
IOL Low-level output current VCC = 3 V to 3.6V 8	8	mA	
V _{CC} = 4.5 V to 5.5 V	16		
$V_{CC} = 2/3 / V \text{ to } 2.7 \text{ V}$ 0 200 0	200		
$\Delta t/\Delta v$ Input transition rise or fall rate $V_{CC} \neq 3/V$ to 3.6 V 0 100 0	100	ns/V	
$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ 0 20 0	20		
T _A Operating free-air temperature	85	°C	

NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCLS383B - SEPTEMBER 1997 - REVISED JUNE 1998

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	,,	SN54LV244A	SN74LV244A	UNIT
PARAMETER	TEST CONDITIONS	VCC	MIN TYP MAX	MIN TYP MAX	UNIT
	I _{OH} = -50 μA	2 V to 5.5 V	V _{CC} -0.1	V _{CC} -0.1	
Vou	$I_{OH} = -2 \text{ mA}$	2.3 V	2	2	\supset_{v}
VOH	I _{OH} = -8 mA	3 V	2.48	2.48	,
	I _{OH} = -16 mA	4.5 V	3.8	3.8	
V	I _{OL} = 50 μA	2 V to 5.5 V	0.1	0.1	
	I _{OL} = 2 mA	2.3 V	0.4	0.4	
VOL	I _{OL} = 8 mA	3 V	0.44	0.44	v
	I _{OL} = 16 mA	4.5 V	0.55	0.55	
lį	$V_I = V_{CC}$ or GND	5.5 V	8 ±1	±1	μΑ
loz	$V_O = V_{CC}$ or GND	5.5 V	±5	±5	μΑ
ICC	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V	20	20	μΑ
l _{off}	V_I or $V_O = 0$ to 5.5 V	0 V	20	20	μΑ
C.	Vi – Vo a ar CND	3.3 V	<u> </u>	2.3	nE.
Ci	V _I = V _{CC} or GND	5 V	// 2.3	2.3	pF

switching characteristics over recommended operating free-air temperature range, $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	LOAD	\1	A = 25°C	\	SN54L	V244A	SN74L	/244A	UNIT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MM	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
tpd*	А	Υ			7.5	12.5	1	15	1	15	
t _{en} *	ŌĒ	Υ	C _L = 15 pF		8.9	14.6	1	17	1	17	ns
^t dis*	ŌĒ	Υ	Ž		9.1	14.1	1	16	1	16	
^t pd	А	Υ			9.5	15.3	1/-	18	1	18	
ten	ŌE	Υ		//	10.8	17.8	$\eta_{\rm C}$	21	1	21	no
^t dis	ŌĒ	Y	CL = 50 pF		13.4	19.2	Q ⁰ 1	21	1	21	ns
t _{sk(o)} †		,				2	Q			2	

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	TO	LOAD	T,	λ = 25°C	;	SN54L	V244A	SN74L	V244A	LINUT
PARAMETER	(INPUT)	(QUTPUT) CAPACITANCE		MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
^t pd*	Α <	(Y)			5.4	8.4	1	10	1	10	
t _{en} *	Œ (\ Y	C _L = 15 pF		6.3	10.6	1	12.5	1	12.5	ns
t _{dis} *	<u>OF</u>	Y			7.6	11	1	13	1	13	
t _{pd}	A	Y			6.8	11.9	1/	13.5	1	13.5	
t _{en}	QFE\\	Y	C: - 50 pF		7.8	14.1	27/2	16	1	16	20
^t dis	(QE)	Y	C _L = 50 pF		11	16	Q 1	18	1	18	ns
t _{sk(o)} †						1.5	Q"			1.5	

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

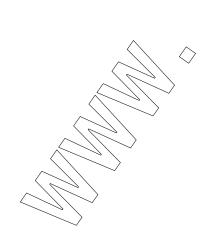
[†] Skew between any two outputs of the same package switching in the same direction

[†] Skew between any two outputs of the same package switching in the same direction

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	LOAD	T,	4 = 25°C	;	SN54L	V244A	SN74L\	/244A	UNIT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
tpd*	А	Υ			3.9	5.5	1	6.5	(1	6.5	
ten*	ŌĒ	Υ	C _L = 15 pF		4.5	7.3	1	8.5	1	8.5	ns
^t dis*	ŌĒ	Υ			6.5	12.2	1	13.5	1	<u></u>	
^t pd	А	Υ			4.9	7.5	1/	8.5	S	8.5	
t _{en}	ŌĒ	Υ	C 50 pF		5.6	9.3	77	10.5) ĭ	10.5	no
^t dis	ŌĒ	Υ	$C_L = 50 \text{ pF}$		8.8	14.2	01	15.5	// 1	15.5	ns
t _{sk(o)} †		·				1		^		1	

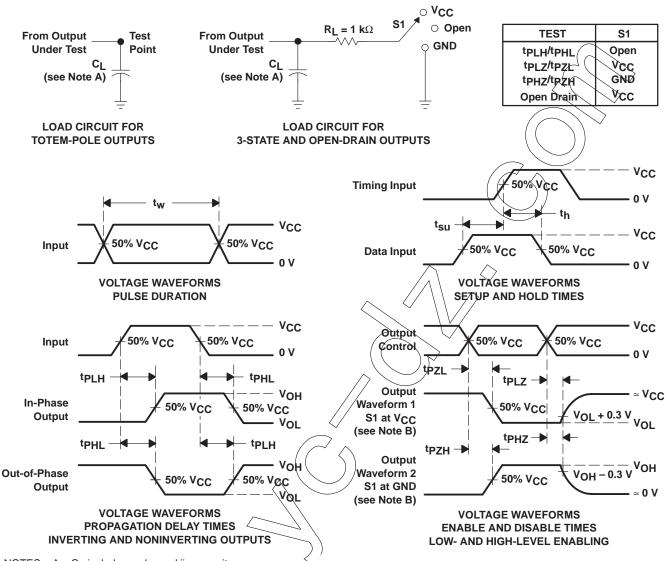
^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.


noise characteristics, V_{CC} = 3.3 V, C_L = 50 pF, T_A = 25°C (see Note 5)

	PARAMETER		SN7	74LV244	ŀΑ	UNIT
	FARAMETER	\wedge	SN74LV244 MIN TYP 0.55 -0.5 2.9 2.31	MAX	ONIT	
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}			0.55		V
V _{OL(V)}	Quiet output, minimum dynamic VOL			-0.5		V
VOH(V)	Quiet output, minimum dynamic VOH			2.9		V
VIH(D)	High-level dynamic input voltage		2.31			V
V _{IL(D)}	Low-level dynamic input voltage				0.99	V

NOTE 5: Characteristics are for surface-mount packages only.

operating characteristics, $T_A = 25^{\circ}C$


	PARAMETER		TEST CO	NDITIONS	VCC	TYP	UNIT
C _{pd} Power dissipation capacitance		$C_1 = 50 \text{ pF},$	f = 10 MHz	3.3 V	14	pF	
	Power dissipation capacitance))	$C_L = 50 \text{ pF},$	1 - 10 101112	5 V	16	ρι

[†] Skew between any two outputs of the same package switching in the same direction

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 3 ns. $t_f \leq$ 3 ns.
 - D. The outputs are measured one at a time with one input transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpHL and tpLH are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright @1998, Texas Instruments Incorporated