Broadcom WLAN Chipset for 802.11a/b/g

August 17, 2003

J. Trachewsky, A. Rofougaran, A. Behzad, T. Robinson, E. Frank

Broadcom Corporation, CA, USA
Outline

• Transceiver Architecture
 – Baseband IC (BCM4306)
 – .11g RFIC (BCM2050)
 – .11a RFIC (BCM2060)

• System Measurement Results

• Conclusion
Dual Band Overall Block Diagram

- BCM2050 Radio
- BCM2060 Radio
- BCM4309 MAC & BB

Key Components:
- Power Amp
- T/R Switch
- Diversity Switch
- LPF or BPF
- Balun
- Crystal
- System Interface

(All components are connected as per the diagram, showing the flow of signals and interconnections.)
Single-band MiniPCI Card

BCM2050

BCM4306
Outline

• Transceiver Architecture
 – Baseband IC (BCM4306/9)
 – .11g RFIC (BCM2050)
 – .11a RFIC (BCM2060)

• System Measurement Results

• Conclusion
Baseband Block Diagram

Diagram showing the block diagram of a baseband module with various components such as:

- 802.11a AFE
- 802.11g AFE
- COFDM Baseband
- 802.11a/g Baseband
- DSSS/CCK Baseband
- GPHY-MAC I/F and classifier
- 802.11a MAC
- 802.11b/g MAC
- TX FIFO
- RX FIFO
- High Speed Backplane
- UARTs
- PCMCIA
- PCI Mini PCI Cardbus
- PCI Config Registers
- UARTs
- LED I/F
- Boot ROM/GPIO I/F
- SPROM I/F
- JTAG Test Interface
DSSS/CCK PHY

• Microcoded preamble processor computes equalizer coefficients on each received frame.
 – > 170 MMACs/sec.
• 11 Mbps r.m.s. delay spread tolerance > 200 nsec.
MAC Architecture

Diagram showing the flow of data and control signals in a MAC (Media Access Control) architecture. Key components include:
- RCV Phy Data/Ctl
- FCS Check
- RCV Data Fifo
- Prog RCV Match Engine
- Conditions
- Shared Mem & Config Regs
- Xmit/Rcv Ptrs
- Timers
- Prog. State Machine
- Conditions
- DP Controls
- Response Gen & Octet Subst
- DMA Address & Control
- XMIT Data Fifo
- XMIT Phy Data/Ctl
- Crc Gen
- Internal Bus

The diagram illustrates the complex interactions and processing steps involved in managing data and control signals in a MAC architecture.
Outline

• Transceiver Architecture
 – Baseband IC (BCM4306)
 – .11g RFIC (BCM2050)
 – .11a RFIC (BCM2060)

• System Measurement Results

• Conclusion
BCM2050 Block Diagram

- LNA
- Calibration
- Clock Generator
- Synthesizer
- PA
- 0-45 dB (3-dB steps)
- RSSI
- NRSSI
- WRSSI
- JTAG

www.yc-dz.com
• Direct-conversion: Low-power, highly integrated
802.11b/g Receiver Architecture

- Low-IF: Power-hungry IF filters
- Super-heterodyne: Off-chip IF filters
- Direct-conversion is the best
Receiver Front-End

- Common-source LNA
- Gilbert-type I/Q mixers
- Active RC filters
- $S_{11}<-16$ dB, IIP3=-8 dBm

![Diagram of Receiver Front-End](image)

Normalized In-band Gain, dB

5 dB/div (narrow mode)
Programmable RX Filter

Ref Lvl
10 dBm

RC 11111
RC 11011
Default 11b
RC 00000
• 5th order Chebychev LPF with programmable bandwidth has sharp cut-off to attenuate interference

• Two independent offset cancellation loops for LPF and PGA
Built-in Radio Calibration

- Built-in calibration ensures repeatability and consistency
 - Controls the effects of process variation to achieve the highest yield on a bulk CMOS process
 - Minimizes the effects of temperature variations during operation
- Calibrates all major blocks of the radio to within 2% of target
 - Filter phase and gain characteristics
 - Gain blocks and matching between major components
 - Center Frequency
 - Does not affect the normal operation and occurs in the normal Tx to Rx switching time – within 10 µsec.
Clock Generator Architecture

- Resolves PA pulling
- Spurs attenuated by on-chip LC filters
BCM2050 Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td>4 dB typ.</td>
</tr>
<tr>
<td>Receiver IIP3 (max. gain)</td>
<td>-16 dBm typ.</td>
</tr>
<tr>
<td>Receiver IIP3 (min. gain)</td>
<td>4 dBm typ.</td>
</tr>
<tr>
<td>Transmitter output power</td>
<td>5 dBm typ.</td>
</tr>
<tr>
<td>Transmitter OIP3</td>
<td>18 dBm</td>
</tr>
<tr>
<td>Transmitter output power range</td>
<td>5 dBm to -15 dBm typ.</td>
</tr>
<tr>
<td>Transmitter EVM</td>
<td>-27 dB min. at 54 Mbps</td>
</tr>
<tr>
<td>Receive-mode current consumption</td>
<td>110 mA typ. (1.8 V)</td>
</tr>
<tr>
<td>Transmit-mode current consumption</td>
<td>80 mA typ. (1.8 V)</td>
</tr>
<tr>
<td>Vdd</td>
<td>1.8 V</td>
</tr>
</tbody>
</table>
Outline

• Transceiver Architecture
 – Baseband IC (BCM4306)
 – .11g RFIC (BCM2050)
 – .11a RFIC (BCM2060)

• System Measurement Results

• Conclusion
802.11a Radio Architecture

- Goal: Lowest Cost, Highest Performance, Lowest Power Consumption Radio
 - Direct Conversion Receiver and Transmitter Architecture
 - CMOS Implementation
 - Integrated PA
 - Take Advantage of Auto-Calibration Schemes
Implementation Challenges

• Direct Conversion:
 – DC offsets
 – Flicker noise on receive path
 – Rx path and/or Tx path oscillations
 – Quadrature accuracy
 – LO pulling
 – LO feedthrough

• Integrated PA
 – High linearity requirements for PA

• Auto-Calibration
 – Automatic Carrier Frequency Control (AFC) Loop
BCM2060 Simplified Radio Architecture

Balun

Optional BPF

RX Baseband

LO Generation

PLL

XO

AFC

JTAG

RC & R calibration

Balun

Sensors out
RSSI’s out
RX_I out
RX_Q out

4 wires JTAG
Crystal Clock out
AFC_I in
AFC_Q in

TX_I in

TX_Q in
Receiver Description

- Full integration
- On-Chip LNA input matching
- High-gain, low-noise, high-linearity, gain controllable LNA/mixer
- 3 stages of high-pass VGA’s
- A 5th-order Chebychev LPF
- Dual RSSI’s
- System NF of 4dB and max gain of 93dB is achieved
Transmitter Description

- Full integration
- 3rd-order Butterworth LPF’s
- Baseband and RF VGA’s
- High-linearity, high-power integrated class AB power amplifier
- On-chip power amplifier output matching
- TX P_{1dB} of 19dBm and P_{sat} of 23dBm are achieved
PLL Description

- Full Integration
- Integer-N PLL with programmable loop bandwidth
- “Fractional-VCO”† with $f_{vco} = 2/3 \ f_r$
 - Reduces pulling from high-power on-chip PA
 - Reduces transmitter LO feed-through
 - Reduces receiver DC offsets due to self-mixing
- Automatic frequency control integrated into PLL
- PLL achieves PN of <-100dBc/Hz@30KHz offset with $f_r = 5.24 \text{ GHz}$

†H. Darabi, et. al., ISSCC 2001
Chip Level Auto-Calibration

- VCO tuning
- AFC
- AFC self-calibration
- R-Calibration on bandgap blocks
- RC time constant calibration
- Integrated power detector
- Integrated temperature sensor
- Transmit LO feedthrough cancellation
Rx System NF and Sensitivity

![Graph showing Gain and NF vs BB Frequency and Data Rate](image.png)

Gain [dB]

- 100
- 96
- 92
- 88
- 84
- 80
- 76
- 72
- 68

NF [dB]

- 0.1
- 1
- 10

BB Frequency [MHz]

- 80
- 84
- 88
- 92
- 96

Rx Sensitivity [dBm]

- 8.9 dB (σ = 0.4 dB)
- 11.7 dB (σ = 0.3 dB)

Data Rate [Mbps]

- 0
- 20
- 40
- 60
Measured Transmit Output Power

Data Rate [Mbps]

Average OFDM Output Power [dBm]

- saturated power limited
- EVM limited
- spectral mask limited
Measured TX Power Spectrum

12.8dBm, 54Mbps, QAM64 (EVM Limited)

18.7dBm, 36Mbps, QAM16 (Spectral Mask Limited)
Summary of Transceiver Performance

<table>
<thead>
<tr>
<th></th>
<th>Measured (this paper)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Band</td>
<td>5.15 – 5.35 GHz</td>
<td>GHz</td>
</tr>
<tr>
<td>RX NF</td>
<td>4</td>
<td>dB</td>
</tr>
<tr>
<td>RX Sensitivity (6Mbps)</td>
<td>-93.7 ± 0.9 dBm</td>
<td></td>
</tr>
<tr>
<td>RX Sensitivity (54Mbps)</td>
<td>-73.9 ± 1.2 dBm</td>
<td></td>
</tr>
<tr>
<td>RX IIP3</td>
<td>-4.8</td>
<td>dBm</td>
</tr>
<tr>
<td>RX IIP2</td>
<td>> 30</td>
<td>dBm</td>
</tr>
<tr>
<td>RX Gain Range</td>
<td>15 to 93 dB</td>
<td></td>
</tr>
<tr>
<td>TX Power Range</td>
<td>-30 to +18.7 dBm</td>
<td></td>
</tr>
<tr>
<td>TX Psat</td>
<td>+23</td>
<td>dBm</td>
</tr>
<tr>
<td>TX P-1dB</td>
<td>+19</td>
<td>dBm</td>
</tr>
<tr>
<td>Vdd</td>
<td>1.8 V</td>
<td>V</td>
</tr>
<tr>
<td>Vdd_PA</td>
<td>3.3 V</td>
<td>V</td>
</tr>
<tr>
<td>Phase Noise @ 30KHz</td>
<td>-100 dBc/Hz</td>
<td></td>
</tr>
<tr>
<td>RX Power Consumption</td>
<td>150 mW</td>
<td>mW</td>
</tr>
<tr>
<td>TX Power Consumption</td>
<td>380 (15dBm OFDM output) mW</td>
<td></td>
</tr>
<tr>
<td>ESD</td>
<td>> ±2.5 on all pins</td>
<td>KV</td>
</tr>
<tr>
<td>Technology</td>
<td>0.18um 1P5M CMOS</td>
<td></td>
</tr>
<tr>
<td>Die Size</td>
<td>11.7 (including padring) mm²</td>
<td></td>
</tr>
</tbody>
</table>
Die Microphotograph of BCM2060

RX

PLL/AFC

TX
Outline

• Transceiver Architecture
 – Baseband IC (BCM4306)
 – .11g RFIC (BCM2050)
 – .11a RFIC (BCM2060)

• System Measurement Results

• Conclusion
Flat-Channel Sensitivity Test Diagram

REFERENCE (Transmitter) -> RF mux -> Power Meter -> DUT (Receiver)

- Dir. Coupler
- Prog. Attenuator
- Dir. Coupler
802.11g System Sensitivity Test Result

1 Mbps sensitivity
-97 dBm

54 Mbps sensitivity
< -70 dBm

Results include all PCB and connector losses.
Measured BCM2060 Phase Noise

Residual PM = 0.0075 rad = 0.43 deg

From 1 kHz
To 305.8116 kHz

Target Specifications
Measured 802.11a TX Constellation Diagram

EVM = -33dB
Po = +6dBm
64-QAM
54 Mbps

RBW: 312.5 kHz
TimeLen: 40 Sym
Measured 802.11a TX EVM Histogram

EVM = -33dB
Po = +6dBm
64-QAM
54 Mbps
Outline

• Transceiver Architecture
 – Baseband IC (BCM4306)
 – .11g RFIC (BCM2050)
 – .11a RFIC (BCM2060)

• System Measurement Results

• Conclusions
Conclusions

- Highest Performance, Highest Integration, Smallest Size, Lowest Power Consumption IEEE 802.11g Transceiver Reported to Date
 - 4 dB Rx chain noise figure
 - Excellent performance in the presence of real-world impairments
 - Fully integrated, direct conversion
 - Various integrated self contained or system level calibration capabilities for high yield and tight tolerances
 - 790 mW transmit or receive (1.8 V), RF and baseband/MAC
 - 10 mW sleep mode, RF and baseband/MAC
 - 802.11g receiver sensitivity with all board losses
 - -70 dBm 54 Mbps
 - -97 dBm 1 Mbps
Conclusions

• Highest Performance, Highest Integration, Smallest Size, Lowest Power Consumption IEEE 802.11a Transceiver Reported to Date
 – 4 dB Rx chain noise figure
 – 23 dBm Tx P_{sat} with integrated PA
 – Excellent performance in the presence of real-world impairments
 – Fully integrated, direct conversion
 – Integrated or system level calibration capabilities for high yield and consistent performance
Acknowledgements

The authors acknowledge the contribution of the following groups:

System Engineering (Sunnyvale, CA)

CAD Support (Irvine, CA)

RF Engineering (Irvine, CA)

Operations and Test Engineering (Irvine, CA)

In particular the contributions of the following individuals are greatly appreciated:

C. Hansen, T. Moorti, R. Gaikwad, J. Lauer, L. Hoo, S. Garlapati, M. Kobayashi
A. Bagchi, G. Kondylis, B. Edwards, M. Matson, M. Fischer, J. Pattin, C. Chu
C. Young, L. Yamano, L. Wu, V. Kodavati, T. Kwan, D. Sobel, A. Woo, L. Burns
T. V. Nguyen, M. Chok, P. Wong, A. Ito, B. Bacher, J. To, R. Graham, G. Loyola