		New [
	APPROVAL SHEET	
CUSTOMER		
PRODUCT	IR RECEIVER MODULE	
MODEL NO.	LR-S25CN	
ISSUED DATE		
APPROVAL NO.		

APPROVAL NO.				
APPROVAL DATE				
	PREPARED	CONFIRMED	CONFIRMED	APPROVAL
APPROVAL				

ISSUED DEPT.	ISSUE	CONFIRMED	APPROVAL
EXAMPLE VIEW ICOM Luminous & Communication	埔		Interter

LR-S25CN

IR Receiver Modules for Remote Control Systems

Description

CLUMICOM

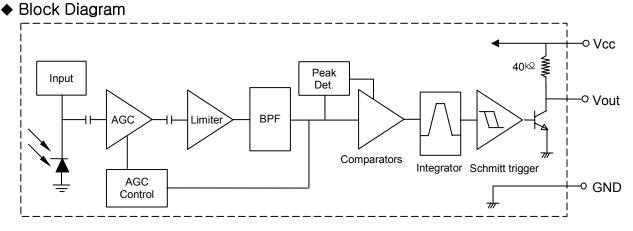
The LR-S25C.. series are infrared remote control receiver modules. They are transfer-molded, small size, light weight and low current consumption modules.

The strong points of Lumicom IR modules are reliable operation even under disturbing ambient light source, and the protection against uncontrolled output pulses.

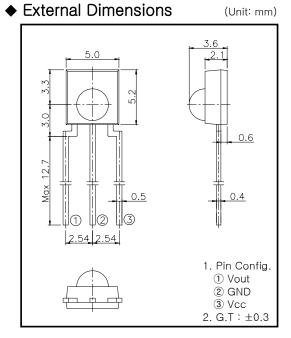
Features

- Wide operating supply voltage between 2.4V to 6.5V
- Photo detector and preamplifier in one package.
- Internal filter for PCM frequency.
- Enhanced immunity against many different kinds of disturbance light sources.
- Low power consumption.
- Output active low.

Application


- AV equipment (TV, DVD Player, Audio, CD player, STB, etc)
- Home appliances (Computer, Air conditioner, Camera, etc)
- Infrared remote control Toys.

Pin Configuration


Туре	Pin Configuration	
LR-S01000	V _{OUT} - Vcc - GND	
LR-S02000	Vcc - Vout - GND	
LR-S0 3 000	GND - Vcc - Vout	
LR-S04000	GND - Vout - Vcc	
LR-S05000	Vout - GND- Vcc	
LR-S0 6 000	Vcc – GND – Vout	

Carrier Frequency

Туре	Carrier Frequency
LR-SOO A OO	32.7 ^{kHz}
LR-SOO B OO	36.7 ^{kHz}
LR-SOO C OO	37.9 ^{kHz}
LR-SOODOO	40.0 kHz
LR-SOO E OO	56.7 ^{kHz}

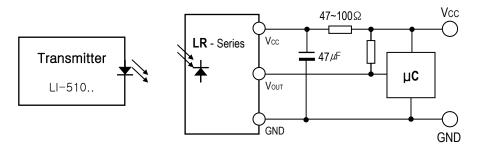
LR-S25CN

(Ta = 25℃)

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply Voltage	Vcc	7.0	V
Output Current	Vout	2.5	mA
Operating Temperature	Topr	-20 to +80	C
Storage Temperature	Tstg	-30 to +85	C
Soldering Temperature *1	Tsd	260 , 5sec	C

*1. t<5 s, 1.6mm from package

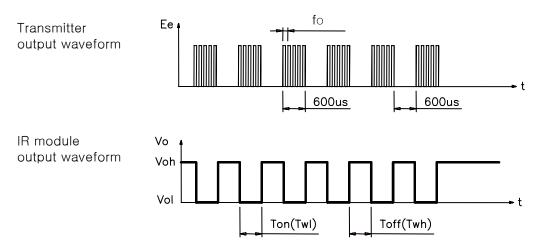

Recommended Operating Condition

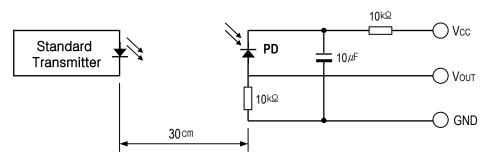
Parameter	Symbol	Ratings	Unit
Operating Voltage	Vcc	2.4 to 6.5	V
Input Frequency	fin	30 to 60	kHz

◆ Electro-optical Characteristics

Electro-optical Characteristics (Ta = 25°C						(Ta = 25℃)	
Parameter	Symbol	Condit	ions	Min	Тур	Max	Unit
Supply Voltage	Vcc			2.4	_	6.5	V
Supply Current	lcc	No input	signal	0.8	1.2	1.5	mA
B.P.F Center Frequency	fo			-3	fo	+3	%
Peak Wave Length	λp			-	940	-	nm
High Level Output Voltage	Vон	Fig.	1	Vcc-0.5		_	V
Low Level Output Voltage	Vol	Fig.	1	_	0.2	0.4	V
High Level Output Pulse Width	Тwн	Fig.	1	450	600	750	μs
Low Level Output Pulse Width	Twl	Fig.	1	450	600	750	μs
		<i>_</i> .	±0°	-	13	_	m
Arrival Distance	L	Fig. 1,2,3	±30°	-	10	_	m
		1,2,0	±45°	_	7	_	m
Output Form	Active Low						

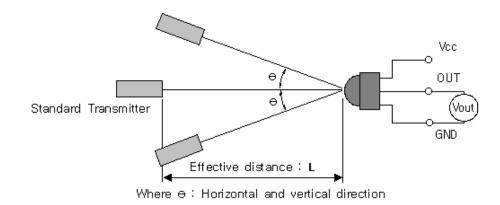
External Application Circuit


- * In case Vcc includes any of noise factor, please add the R-C filter as above. R-C filter should be connected closely between Vcc pin and GND pin. * ON/OFF pulse width is satisfied within 0.3m~ arrival distance.
- QC-01-03A



Measurement Conditions

[Fig.1] Output Waveform



[Fig.2] Transmitter

Wout value of the standard transmitter should satisfy 250mVp-p when they were tested as above.

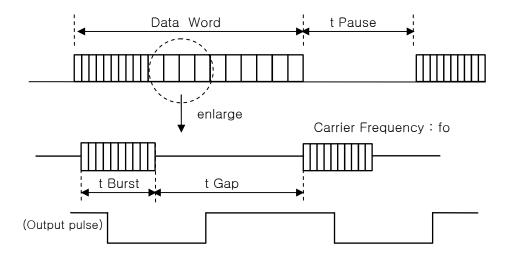
[Fig.3] Arrival distance test condition

* Intensity of illumination checked at detecting surface of IR module is 0 Lux.

♦ Suitable Data Format

The circuit of the LR-S25C.. series is designed in that way that unexpected output pulses due to noise or disturbance signals are avoided. A band pass filter, an integrator stage and an automatic gain control are used to suppress such disturbances.

The distinguishing mark between data signal (not suppressed) and disturbance signal (suppressed) are carrier frequency, burst length and Signal Gap Time (see Fig. 4).


The data signal should full-fill the following condition :

- Carrier frequency should be close to center frequency of the band-pass.
- Burst length should be 300us/burst or longer.
- After each burst, a gap time of at least 300us is necessary.
- The data format should not make a continuous signal transmission.
- There must be a Signal Gap Time (longer than 20ms) at least each 100 ms, or each data command.

Some examples for suitable data format are :

NEC Code, RC5 Code, Toshiba Code, Matsushita Code, Mitsubishi Code, Sony Code.

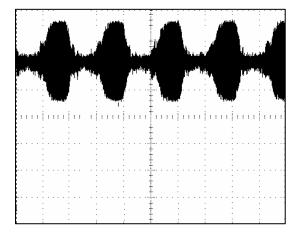
[Fig.4] Data Signal diagram

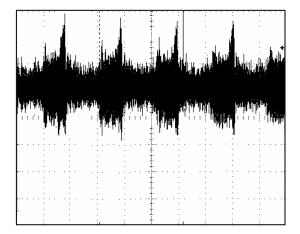
* t Gap : Signal gap time between two burst in pulses of carrier.

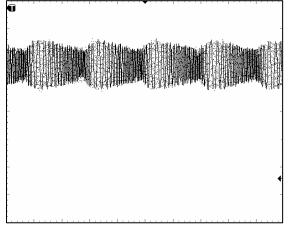
* t Pause : Data pause between two data words.

* t Burst : Length of a burst in pulses of the carrier frequency.

◆ Disturbance Suppression


When a disturbance signal is applied to the LR-S25C.. series. it can still receive the data signal. However the sensitivity is reduced to that level that no unexpected pulses will occurrence. Some examples for such disturbance signals which are suppressed by the LR-S25C.. series are :


- Signals from fluorescent lamps with electronic ballast (please refer to Fig.5, Fig.6)
- Continuous signal at 38 kHz or at any other frequency
- DC light (from tungsten bulb or sunlight)



[Fig.5] IR Signal from Fluorescent Lamp with high Modulation

[Fig.6] IR Signal from Fluorescent Lamp with low Modulation

The signals shown in Fig. 5 and Fig. 6 comes from a fluorescent lamp with electronic ballast which is operated at 60 Hz power line frequency. A different kind of disturbance signal is caused by fluorescent lamps with electronic ballast. Typically the oscillating frequency of the optical disturbance signal of such lamps is in the range between 50 kHz and 100 kHz. This frequency is twice the electrical oscillating frequency of the driver circuit in the lamp ballast. All LR-S25C.. series IR receiver modules can suppress such disturbance signals as shown in Fig.5 and Fig. 6 efficiently.

There will be no unexpected output pulses due to such lamps. However, sensitivity will be reduced according to the strength of the disturbance signal. More critical are the electronic ballasts with high modulation of the oscillating amplitude.

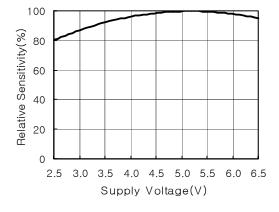
Reliability Test Items

Parameter	Test conditions	Remark	
High Temperature	Ta=+70, Vcc=5.0V	t=240h	% 1, % 2
Low Temperature	Ta=-20, Vcc=5.0V	t=240h	% 1, % 2
High Temp./ High Humidity	Ta=+60°C 90%RH, Vcc=5.0V	t=240h	% 1, % 2
Heat Cycle	Ta=-25℃(0.5h) to +80℃(0.5h)	20 cycle	* 2, * 3
Fall Test	Height=75cm, 3 times		※ 4

* 1. Supply voltage of load test is 5V.

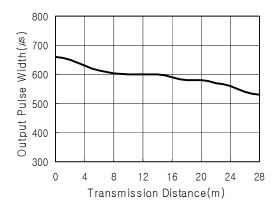
* 2. Electro-optical characteristics shall be satisfied after leaving 2 hours in the normal condition.

* 3. Heat cycle test shall repeat above condition 20 times under no load.

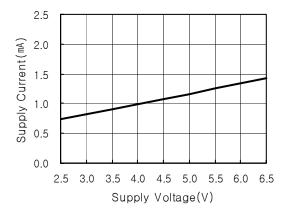

* 4. The test devices shall be dropped three time on the hard wooden board from a height of 75cm.

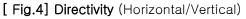
CUMICOM-

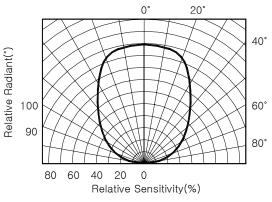
LR-S25CN



◆ Electrical/Optical Characteristics




[Fig.1] Sensitivity vs. Supply Voltage


[Fig.3] Output Pulse Width vs. Distance

[Fig.2] Supply Current vs. Voltage

Caution

- The performance of remote control system depends on environment condition and ability of peripheral parts. Thus, it is highly recommended to evaluate the performance of the receiver module using the final product after the receiver module is assembled with peripheral components such as resistor, condenser, MICOM, and so on.
- Store and use where there is no force causing transformation or change in quality.
- Store and use when there is no extreme humidity.
- Solder the lead-pin within the condition of ratings.
- To prevent static electricity damage to the product. make sure that the human body and the soldering iron are connected to ground before using.
- Put decoupling condenser(47μ F \sim 470 μ F) between Vcc and GND for reducing the noise from power supply line.

Others

In case where any trouble or questions arise, both parties agree to make full discussion covering the said problem.

♦ ESD Test Results

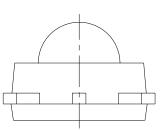
Parameter	Conditions	Specification	Results
Machine Model	C=200pF, R=0Ω	Min ±200V	>±200V
Human Body Model	C=100pF, R=1.5kΩ	Min ±2000V	>±2000V

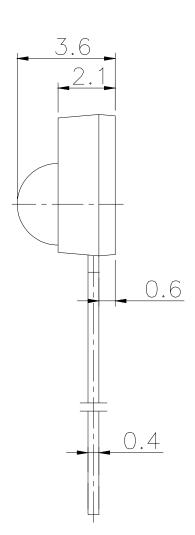
◆ Material Configuration

Parameter	Configuration	Remark
IC	silicon(99%)	
Photo diode	silicon(99%)	
Lead frame	iron(99.5%)	
Epoxy resin	resin(55.5%), hardener(45.5%)	
Silver epoxy	silver(80%), resin(10%), hardener(10%)	
Bond wire	gold(99.99%)	
Shield Case		
Support Guide		

◆ Packing Method

Parameter	Dimension	Quantity
Anti-Bag	120 x 150 x 0.15mm	500 ea
Box(#1)	140 x 220 x 75mm	2,500 ea
Box(#2)	295 x 400 x 250mm	25,000 ea
Box(#3)	620 x 450 x 515mm	100,000 ea





External Dimension (Unit : mm)

1. Pin Config. (1) Vout (2) GND (3) Vcc 2. G.T : ±0.3