TOSHIBA

CMOS 32-Bit Microcontroller TMP94C251AF

1. Outline and Device Characteristics

TMP94C251A is high-speed advanced 32-bit microcontroller developed for controlling equipment which processes mass data.

TMP94C251A is a microcontroller which has a high-performance CPU (900/H2 CPU) and various built-in I/Os. And TMP94C251A is enhanced memory interface functions TMP94C251AF is housed in an 144-pin mini flat package.

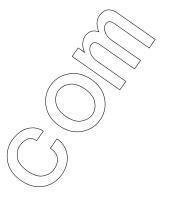
Device characteristics are as follows:

- (1) CPU: 32-bit CPU (900/H2 CPU)
 - Compatible with TLCS-900, 900/L, 900/L1, 900/H's instruction code
 - 16 Mbytes of linear address space
 - General-purpose registers and register banks
 - Micro DMA: 8 channels (250 ns/4 bytes at 20 MHz) .
- (2) Minimum instruction execution time: 50 ns (at 20 MHz)
- (3) Internal memory
 - Internal RAM: 2 Kbytes (can use for code section)
 - Internal ROM: None
- (4) External memory expansion
 - Expandable up to 16 Mbytes (shared program/data area)
 - Can simultaneously support 8-/16-bit width external data bus
- (5) Memory controller
 - Chip select output: 6 channels
- (6) DRAM Controller: 2 channels
 - Direct interface (supported 8-/16-bit external data bus)

030619EBP1

The information contained herein is subject to change without notice.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.


TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunctionor failure of Unich cause less of human life or bodily injury ("Unitended Usage"). Unitended Usage include adout serve control failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy contro instruments, aliphane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk

The products described in this document are subject to the foreign exchange and foreign trade laws. TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

- (7) 8-bit timer: 4 channels
- (8) 16-bit timer: 4 channels
- (9) Serial interface: 2 channels
- (10) 10-bit AD converter: 8 channels (with sample hold circuit)
- (11) 8-bit DA converter: 2 channels (with CMOS-AMP)
- (12) Watchdog timer
- (13) Interrupt controller
 - 18 internal interrupts
 - 10 external interrupts
- (14) I/O port: 64 pins
- (15) Package: 144-pin QFP (P-QFP144-2020-0.50)

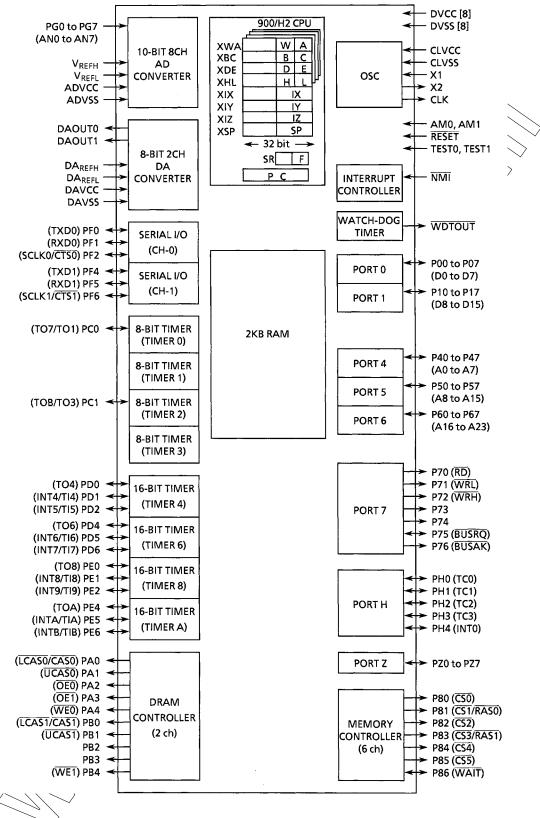
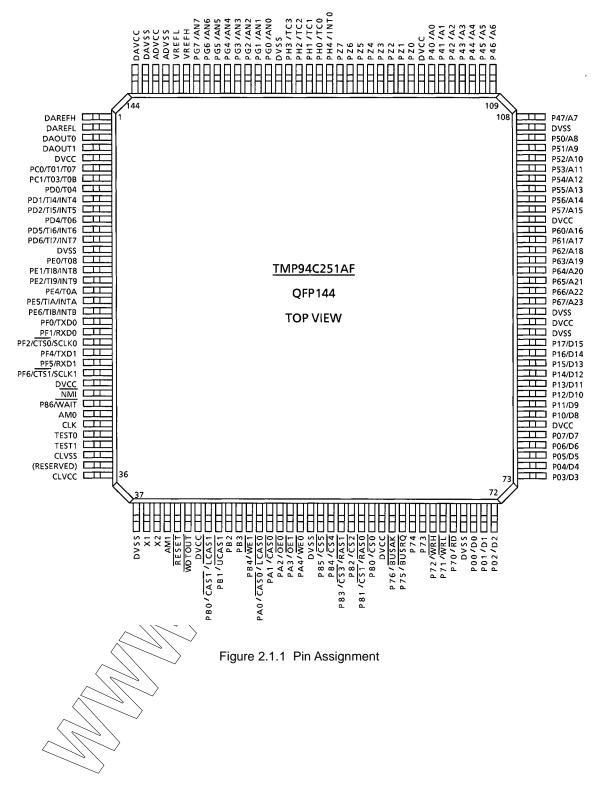
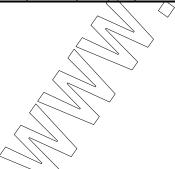



Figure 1.1 TMP94C251A Block Diagram

2. Pin Assignment and Functions

2.1 Pin Assignment (Top view)



2.2 Pin Names and Functions

The names of input/output pins and their functions are described below.

Pin Name	Number of Pins	I/O	Functions		
P00 to P07 D0 to D7	8 (TTL)	I/O I/O	Port 0: I/O port Data: 0 to 7 for data bus		
	(112)	1/0	TMP94C251A is external ROM type, these pins are initialized to this function. When TMP94C251A doesn't access external memories, these pins are put in the high-impedance state.		
P10 to P17	8	I/O	Port 1: I/O port		
D8 to D15	(TTL)	I/O	Data: 8 to15 for data bus		
			If TMP94C251A is external ROM type and is start with 16 bit data bus, these pins are initialized to this function.		
			When TMP94C251A doesn't access external memories, these pins are put in the high-impedance state.		
P40 to P47	8	I/O	Port 4: I/O port		
A0 to A7		Output	Address: 0 to 7 for address bus		
			TMP94C251A is external ROM type, these pins are initialized to this function.		
			When TMP94C251A doesn't access external memories, these pins don't change.		
P50 to P57	8	I/O	Port 5: I/O port Address: 8 to 15 for address bus		
A8 to A15		Output	TMP94C251A is external ROM type, these pins are initialized to this function.		
			When TMP94C251A doesn't access external memories, these pins don't change.		
P60 to P67	8	I/O	Port 6: I/O port		
A16 to A23	Ŭ	Output	Address: 16 to 23 for address bus		
			TMP94C251A is external ROM type, these pins are initialized to this function.		
			When TMP94C251A doesn't access external memories, these pins don't change.		
P70	1	Output	Port 70: Output port (output "high" when initialized)		
RD		Output	Read: Strobe signal for reading external memory		
			When TMP94C251A doesn't access external memory, doesn't output strobe.		
			TMP94C251A is external ROM type, these pins are initialized to this function.		
P71	1	Output	Port 71: Output port (output "high" when initialized)		
WRL		Output	Write LL: Strobe signal for writing data on pins D0 to D7		
			When TMP94C251A doesn't access external memory, doesn't output strobe.		
P72	1	Output	Port 72: Output port (output "high" when initialized)		
WRH		Output	Write LH: Strobe signal for writing data on pins D8 to D15		
	ļ		When TMP94C251A doesn't access external memory, doesn't output strobe.		
P73	1	Output	Port 73: Output port (output "high" when initialized)		
P74	1	Output	Port 74: Output port (output "high" when initialized)		

Table 2.2.1	Pin Names and Functions (1/6)
10016 2.2.1	1 in Marines and 1 uncliding $(1/0)$

Pin Name	Number of Pins	I/O	Functions	
P75	1	I/O	Port 75: I/O port	
BUSRQ		Input	Bus request: Signal used to request high impedance for memory interface signals. If these	
			signals are used as port, there are not change. The memory interface signals are follows:	
			A0 to A23, D0 to D15, RD, WRLL, WRLH	
			The output signals of memory controller.	
P76	1	Output	Port 76: Output port (output "high" when initialized)	
BUSAK		Output	Bus acknowledge: Signal indicating that request of $\overline{ extsf{BUSRQ}}$ signal is accepted.	
P80	1	Output	Port 80: Output port (output "high" when initialized)	
CS0		Output	Chip select 0: Outputs "low" if address is within specified address area.	
P81	1	Output	Port 81: Output port (output "high" when initialized)	
CS1		Output	Chip select 1: Outputs "low" if address is within specified address area.	
RAS0		Output	Row address strobe 0: Outputs RAS strobe for DRAM if address is within specified address area.	
P82	1	Output	Port 82: Output port (output "high" when initialized)	
CS2		Output	Chip select 2: Outputs "low" if address is within specified address area.	
P83	1	Output	Port 83: Output port (output "high" when initialized)	
CS3		Output	Chip select 3: Outputs "low" if address is within specified address area.	
RAS1		Output	Row address strobe 1: Outputs RAS strobe for DRAM it address is within specified address area.	
P84	1	Output	Port 84: Output port (output "high" when /initialized)	
CS4		Output	Chip select 4: Outputs "low" if address is within specified address area.	
P85	1	Output	Port 85: Output port (output "high when initialized)	
CS5		Output	Chip select 5: Outputs "low" if address is within specified address area.	
P86	1	I/O	Port 86: I/O port	
WAIT		Input	Wait: Signal used to request CPU bus wait.	

Table 2.2.2 Pin Names and Functions (2/6)

 \Diamond

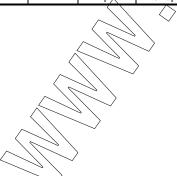

Pin Name	Number of Pins	I/O	Functions	
PA0	1	Output	Port A0: Output port (output "high" when initialized)	
CAS0		Output	Column address strobe 0: Outputs CAS strobe for DRAM if address is within specified address area.	
LCAS0		Output	Lower column address strobe 0: Outputs lower CAS strobe for DRAM if address is within specified address area.	
PA1	1	Output	Port A1: Output port (output "high" when initialized)	
UCAS0		Output	Upper Column address strobe 0: Outputs upper CAS strobe for DRAM if address is within specified address area.	
PA2	1	Output	Port A2: Output port (output "high" when initialized)	
OE0		Output	Output enable 0: Outputs read enable signal for DRAM.	
PA3	1	Output	Port A3: Output port (output "high" when initialized)	
OE1		Output	Output enable 1: Outputs read enable signal for DRAM.	
PA4	1	Output	Port A4: Output port (output "high" when initialized)	
WE0		Output	Write enable 0: Outputs write enable signal for DRAM.	
PB0	1	Output	Port B0: Output port (output "high" when initialized)	
CAS1		Output	Column address strobe 1: Outputs CAS strobe for DRAM if address is within specified address area.	
LCAS1		Output	Lower column address strobe 1: Outputs lower CAS strobe for DRAM if address is within specified address area.	
PB1	1	Output	Port B1: Output port (output "high" when initialized)	
UCAS1		Output	Upper Column address strobe 1: Outputs upper CAS strobe for DRAM if address is within specified address area.	
PB2	1	Output	Port B2: Output port (output "high" when initialized)	
PB3	1	Output	Port B3: Output port (output "high" when initialized)	
PB4	1	Output	Port B4: Output port (output "high" when initialized)	
WE1		Output	Write enable 1: Outputs write enable signal for DRAM.	

Table 2.2.3 Pin Names and Functions (3/6)

 \Diamond

Pin Name	Number of Pins	I/O	Functions
PC0	1	I/O	Port C0: I/O port
TO1		Output	Timer output 1: 8-bit timer 0 or 1 output
TO7		Output	Timer output 7: 16-bit timer 7 output
PC1	1	I/O	Port C1: I/O port
тоз		Output	Timer output 3: 8-bit timer 2 or 3 output
тов		Output	Timer output B: 16-bit timer B output
PD0	1	I/O	Port D0: I/O port
TO4		Output	Timer output 4: 16-bit timer 4 output
PD1	1	I/O	Port D1: I/O port
TI4		Input	Timer input 4: 16-bit timer 4 input
INT4		Input	Interrupt request pin 4: Interrupt request pin with programmable rising/falling edge
PD2	1	I/O	Port D2: I/O port
TI5		Input	Timer input 5: 16-bit timer 4 input
INT5		Input	Interrupt request pin 5: Interrupt request pin with rising edge
PD4	1	I/O	Port D4: I/O port
TO6		Output	Timer output 6: 16-bit timer 6 output
PD5	1	I/O	Port D5: I/O port
ТІ6		Input	Timer input 6: 16-bit timer 6 input
INT6		Input	Interrupt request pin 6: Interrupt request pin with programmable rising/falling edge
PD6	1	I/O	Port D6: I/O port
TI7		Input	Timer input 7: 16-bit timer 6 input
INT7		Input	Interrupt request pin 7: Interrupt request pin with rising edge
PE0	1	I/O	Port E0: I/O port
TO8		Output	Timer output 8: 16-bit timer 8 output
PE1	1	I/O	Port E1: I/O port
TI8		Input	Timer input 8: 16-bit timer 8 input
INT8		Input	Interrupt request pin 8:/Interrupt request pin with programmable rising/falling edge
PE2	1	I/O	Port E2: I/O port
ТI9		Input	Timer input 9: 16-bit-timer 8 input
INT9		Input	Interrupt request pin 9: Interrupt request pin with rising edge
PE4	1	I/O	Port E4: I/Q port
ТОА		Output	Timer output A: 16-bit timer A output
PE5	1	I/O	Port E5: I/O port
TIA		Input	Timer input A 16-bit timer A input
INTA		Input	Interrupt request pin A: Interrupt request pin with programmable rising/falling edge
PE6	1	I/O	Port E6: I/O port
TIB		Input	Timer input B: 16-bit timer A input
INTB		Input	Interrupt request pin B: Interrupt request pin with rising edge

Table 2.2.4	Pin Names and Functions ((4/6)
10010 2.2.1		(1/0)

Pin Name	Number of Pins	I/O	Functions
PF0	1	I/O	Port F0: I/O port
TXD0		Output	Serial send data 0
PF1	1	I/O	Port F1: I/O port
RXD0		Input	Serial receive data 0
PF2	1	I/O	Port F2: I/O port
CTS0		Input	Serial data receive enable 0
SCLK0		I/O	Serial clock I/O 0
PF4	1	I/O	Port F4: I/O port
TXD1		Output	Serial send data 1
PF5	1	I/O	Port F5: I/O port
RXD1		Input	Serial receive data 1
PF6	1	I/O	Port F6: I/O port
CTS1		Input	Serial data receive enable 1
SCLK1		I/O	Serial clock I/O 1
PG0 to PG7	8	Input	Port G: Input port
AN0 to AN7		Input	Analog input: Input to 10-bit AD converter
DAOUT0	1	Output	DA output 0: Output from 8-bit DA converter 0
DAOUT1	1	Output	DA output 1: Output from 8-bit DA converter 1
PH0	1	I/O	Port H0: I/O port
TC0		Output	Terminal count 0: Outputs "high" strobe when counter value of micro-DMA channel 0 is "0".
PH1	1	I/O	Port H1: I/O port
TC1		Output	Terminal count 1: Outputs "high" strobe when counter value of micro-DMA channel 1 is "0".
PH2	1	I/O	Port H2: I/O port
TC2		Output	Terminal count 2: Outputs "high" strobe when counter value of micro-DMA channel 2 is "0".
PH3	1	I/O	Port H3: I/O port
TC3		Output	Terminal count 3: Outputs //high" strobe when counter value of micro-DMA channel 3 is "0".
PH4	1	I/O	Port H4: I/O port (schmitt input)
INT0		Input	Interrupt request pin 0: Interrupt request pin with programmable level/rising edge. (schmitt input)
PZ0 to PZ7	8	I/O	Port Z: I/O port
NMI	1	Input	Non-maskable interrupt request pin: Interrupt request pin with falling edge.
			Can also be operated at rising edge by program. (schmitt input)
WDTOUT	1	Output	Watchdog timer output pin

Table 2.2.5 Pin Names and Functions (5/6)

 \bigcirc

Pin Name	Number of Pins	I/O	Functions	
AM0, 1	2	Input	Address mode: Selects external data bus width.	
			AM1 = "low" AM0 = "low": Start with 8-bit external data bus	
			AM1 = "low" AM0 = "high": Start with 16-bit external data bus	
			AM1 = "high" AM0 = "low": Don't use this setting	
			AM1 = "high" AM0 = "high": Don't use this setting	
TEST0, 1	2	Input	Test: Input "low" when using	
CLK	1	Output	Clock output: Outputs system clock	
X1/X2	2	I/O	Oscillator connecting pin	
RESET	1	Input	Reset: Initializes LSI (with pull-up resistor) (schmitt input)	
VREFH	1	Input	Pin for reference voltage input to AD converter ("high" level)	
VREFL	1	Input	Pin for reference voltage input to AD converter ("low" level	
DAREFH	1	Input	Pin for reference voltage input to DA converter ("high" level)	
DAREFL	1	Input	Pin for reference voltage input to DA converter ("low" level)	
ADVCC	1	-	Power supply pin for 10-bit AD converter	
ADVSS	1	-	GND pin for 10-bit AD converter (0 V)	
DAVCC	1	-	Power supply pin for 8-bit DA converter	
DAVSS	1	-	GND pin for 8-bit DA converter (0 V)	
CLVCC	1	-	Power supply pin for clock doubler	
CLVSS	1	-	GND pin for clock doubler	
DVCC	8	T	Power supply pin (+5 V) (Connect all DVCC pins to +5V)	
DVSS	8	-	GND pin (0 V) (Connect all DVSS pins to GND(0)).)	

Table 2.2.6 Pin Names and Functions (6/6)

 \Diamond

3. Operation

The following is a block-by-block description of the functions and basic operation of TMP94C251A.

3.1 CPU

TMP94C251A contains an advanced, high-speed 32-bit CPU (900/H2 CPU).

3.1.1 CPU Outline

900/H2 CPU is high-speed and high-performance CPU based on 900/H CPU. 900/H2 CPU has expanded 32-bit internal data bus to process instructions more quickly. Functional differences between 900/H2 CPU and 900/H CPU are as follows;

	900/H2 CPU
Width of CPU Address Bus	24-bit
Width of CPU Data Bus	32-bit
Internal Operating Frequency	20 MHz
Minimum Bus Cycle	1-clock access (50 ns @ 20 MHz)
Bus Sizing Function	8/16-bit
Internal RAM	32-bit 1-clock access
Internal I/O	8/16/32-bit 2-clock access
External Device	8/16-bit 2-clock access (can insert some waits)
Minimum Instruction Execution Cycle	1-clock (50 ns @20 MHz)
Conditional Jump	2-clock (100 ns @20 MHz)
Instruction Queue Buffer	12-byte
Instruction Set	No MIN instruction No LDX instruction
CPU mode	No MIN (minimum) mode
Micro DMA	8-channel

 $\langle \rangle$

3.1.2 Reset Operation

When resetting the TMP94C251A microcontroller, ensure that the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then set the $\overline{\text{RESET}}$ input to low level at least for 10 system clocks (2 µs at 10 MHz). Thus, when turn on the switch, be set to the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then hold the $\overline{\text{RESET}}$ input to low level at least for 10 system clocks.

Clock gear is initialized 1/16 mode by reset operation. It means that the system clock mode fsys is set to fc/32 (= $fc/16 \times 1/2$).

When the reset is accepted, the CPU:

- Set the program counter (PC) to the reset vector stored at addresses FFFF00H to FFFF02H.
 - PC (7:0) \leftarrow Value at address FFFF00H
 - PC (15:8) \leftarrow Value at address FFFF01H
 - PC (23:16) \leftarrow Value at address FFFF02H
- Sets the stack pointer (XSP) to 00000000H
- Sets bits IFF2 to IFF0 of the status register (SR) to 11/1 This sets the interrupt level mask register to level 7).
- Clears bits RFP1 to RFP0 of the status register (SR) to 00 (This sets the register banks to 0).

After reset is released, the CPU begins execution from the instruction at the location specified in the PC. Other than the changes described above, reset does not alter any internal CPU registers.

When reset is accepted, processing of the internal I/O, port, and other pins are as follows:

- Initializes the internal I/O registers as table of "Special Function Register" in section 5.
- Set ports pins to general purpose input port mode.
- Sets the WDTOUT pin to "Dow". (However, when reset is released, sets to "High".)

When external reset is released, built-in clock doubler begins operation and after the stable time (1.6384 ms at 20 MHz) elapse of the circuit, internal reset is released.

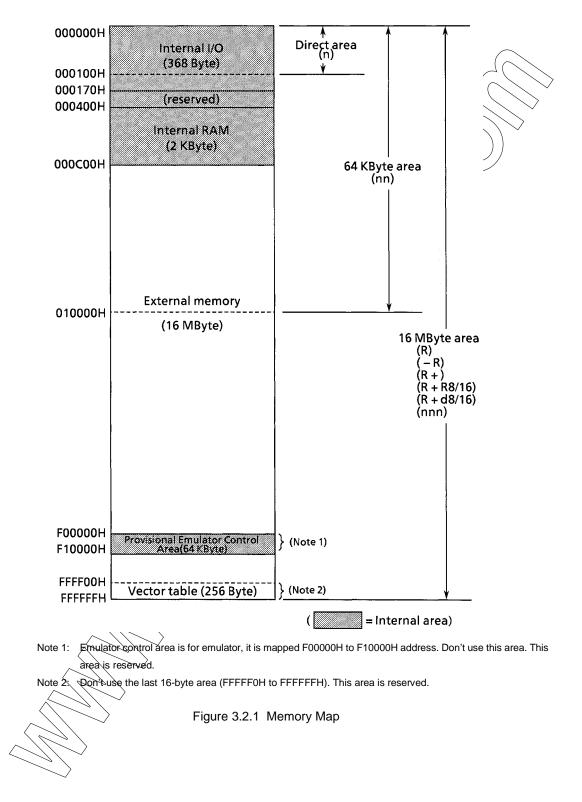
The operation of memory controller and DRAM controller cannot be insured until power supply becomes stable after power-on reset. The external RAM data provided before turning on the TMP94C251A may be spoiled because the control signals are unstable until power supply becomes stable after power on reset.

3.1.3 Data Bus Size after Reset Release

The start data bus size is determined depending on the state of a AM1/AM0 pins just after reset release. Then the external memory is accessed as follows.

AM1	AM0	Start mode	
"0"	"0"	8 bit data bus (1wait)	
"0"	"1"	16 bit data bus (1wait)	
"1"	"0"	Don't use this setting	
"1"	"1"	Don't use this setting	

For the details, refer to chapter 3.6 "Memory Controller".


3.1.4 Setting of TEST0, TEST1

Connect TEST0, TEST1 pin to "GND" to use.

3.2 Memory Map

Figure 3.2.1 is a memory map of the TMP94C251A.

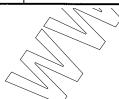
>

4. Electrical Characteristics

4.1 Maximum Ratings

Symbol	Parameter	Rating	Unit
V cc	Power Supply Voltage	– 0.5 to 6.5	V
VIN	Input Voltage	- 0.5 to Vcc + 0.5	V
Σ I O L	Output Current (total)	120	mA
ΣΙΟΗ	Output Current (total)	- 120	mA
PD	Power Dissipation (Ta = 70°C)	600	mW

Note: The maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no maximum rating value will ever be exceeded.


4.2 DC Electrical Characteristics

Vcc = 5 V \pm 10%, TA = -20 to 70°C X1 = 8 to 10 MHz (Internal operation = 16 to 20 MHz)

Symbol	Parameter	Min	Max	Unit	Test Condition
V ILO	Input Low Voltage P00 to P07 (D0 to 7) P10 to P17 (D8 to 15) P20 to P27 (D16 to 23) P30 to P37 (D24 to 31)	- 0.3	0.8	V	
V IL1	Input Low Voltage P40 to P47 P50 to P57 P60 to P67 P75 P86 PC0, PC1 PD0 to PD2, PD4 to PD6 PE0 to PE2, PE4 to PE6 PF0 to PF2, PF4 to PF6 PG0 to PG7 PH0 to PH3 PZ0 to PZ7	- 0.3	0.3*Vcc	V	
V IL2	Input Low Voltage PH4 (INT0) NMI RESET	- 0.3	0.25*Vcc	V	
V IL3	Input Low Voltage AM0, AM1 TEST0, TEST1	- 0.3	0.3	V	
V IL4	Input Low Voltage X1	- 0.3	0.2*Vcc		
V IHO	Input High Voltage P00 to P07 (D0 to 7) P10 to P17 (D8 to 15) P20 to P27 (D16 to 23) P30 to P37 (D24 to 31)	2.2	Vcc + 0.3	V	

Note: Typical value are for $Ta = 25 \circ C$ and $Vcc = 5 \vee U$ unless otherwise noted.

Symbol	Parameter	Min	Max	Unit	Test Condition
V IH1	Input High Voltage P40 to P47 P50 to P57 P60 to P67 P75 P86 PC0, PC1 PD0 to PD2, PD4 to PD6 PE0 to PE2, PE4 to PE6 PF0 to PF2, PF4 to PF6 PG0 to PG7 PH0 to PH3 PZ0 to PZ7	0.7*Vcc	Vcc + 0.3	V	
V IH2	Input High Voltage <u>PH4</u> (INTO) <u>NMI</u> RESET	0.75*Vcc	Vcc + 0.3	V	
V IH3	Input High Voltage AM0, AM1 TEST0, TEST1	Vcc-0.3	Vcc + 0.3	V	
VIH4	Input High Voltage X1	0.8*Vcc	Vcc + 0.3	V	
V OL	Output Low Voltage		0.45	V	IOL = 1.6 mA
V OH0	Operating Cururent (NORMAL)	2.4		V	IOH = - 400µA
V OH1	Output High Voltage	0.75*Vcc		V	IOH = - 100μA
V OH2	Output High Voltage	0.9*Vcc		V	IOH = - 20μA
I LI	Input Leakage Current	0.02 (typ.)	±5	μA	0.0V≦Vin≦Vcc
I LO	Output Leakage Current	0.05 (typ.)	± 10	μA	0.2V≦ Vin≦ Vcc – 0.2 V
l cc0	Operating Current (NORMAL)	90	108	mA	X1 = 10 MHz (Internal 20 MHz)
l cc1	RUN	50	70	mA	X1 = 10 MHz (Internal 20 MHz)
l cc2	IDLE	5	20	mA	X1 = 10 MHz (Internal 20 MHz)
l cc3	STOP	0.5	50	μA	$0.2 V \le Vin \le Vcc - 0.2 V$ Ta = - 20~70°C
l cc4	STOP		10	μA	$0.2 V \le Vin \le Vcc - 0.2 V$ Ta = 0~50°C
V STOP	Power Down Voltage @ STOP (for internal RAM back-up)	2.0	6.0	V	VIL2 = 0.2*Vcc VIH2 = 0.8*Vcc
RRST	Pu <u>ll Up</u> Registance RESET	50	150	kΩ	
CIO	Pin Capacitance		10	pF	fc = 1 MHz
VTH	Schmitt Width PH4 (INTO) NMI RESET	0.4	1.0 (typ)	V	

AC Electrical Characteristics 4.3

Basic Bus Cycle 4.3.1

(1) Read cycle

No.	Symbol	Parameter	Min	Max	at 20 MHz	at 16∕ <i>M</i> Hz	Unit
1	tosc	OSC period (X1/X2)	100	125	100	125	ns
2	tCYC	System Clock Period (= T)	50	62.5	50	62.5	ns
3	t _{CL}	CLK Low Width	0.5 imes T - 15		10	16	∕ns
4	t _{CH}	CLK High Width	$0.5 \times T - 15$		10	16	ns
5-1	t _{AD}	A0 to A23 \rightarrow D0 to D31 Input at 0 waits		$2.0\times T-50$	50	\75 [°]	ns
5-2	t _{AD3}	A0 to A23 \rightarrow D0 to D31 Input at 1 wait		3.0 imes T - 50	100	138	ns
6-1	t _{RD}	\overline{RD} Fall \rightarrow D0 to D31 Input at 0 waits		1.5 imes T - 45	30	49	ns
6-2	t _{RD3}	\overline{RD} Fall \rightarrow D0 to D31 Input at 1 wait		$2.5\times T-45$	80	111	ns
7-1	t _{RR}	RD Low Width at 0 waits	1.5 imes T - 20		55)	74	ns
7-2	t _{RR3}	RD Low Width at 1 wait	$2.5\times T-20$		105	136	ns
8	t _{AR}	A0 to A23 Valid $\rightarrow \overline{RD}$ Fall	$0.5 \times T - 20$		5	11	ns
9	t _{RK}	\overline{RD} Fall $\rightarrow CLK$ Fall	$0.5 \times T - 20$		5	11	ns
10	t _{HA}	A0 to A23 Invalid \rightarrow D0 to D31 Hold	0	\sim \sim	0	0	ns
11	t _{HR}	$\overline{\text{RD}}$ Rise \rightarrow D0 to D31 Hold	0		0	0	ns
12	t _{APR}	A0 to A23 Valid \rightarrow PORT Input	~ []	2.0 × T -/120	-20	5	ns
13	t _{APH}	A0 to A23 Valid \rightarrow PORT Hold	2.0 × T		100	125	ns
14	t _{TK}	WAIT Setup Time	45		15	15	ns
15	t _{KT}	WAIT Hold Time	5		5	5	ns
		(2) Write cycle	$\gamma \bigcirc$)			

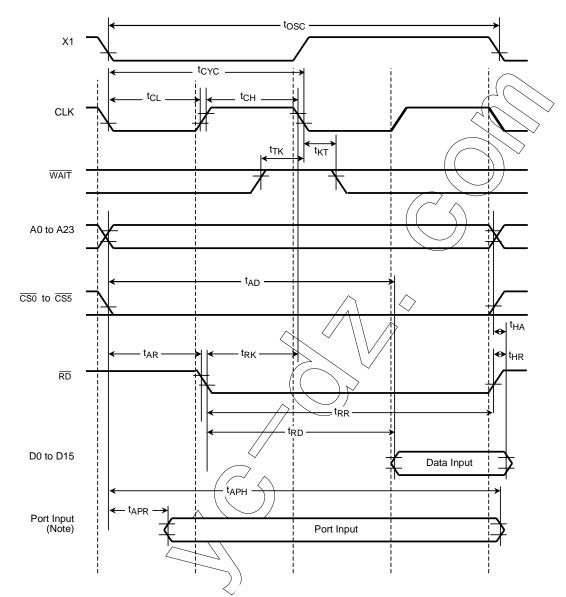
(2) Write cycle

No.	Symbol	Parameter	Min	Max	at 20 MHz	at 16 MHz	Unit
1	tosc	OSC Period (X1/X2)	100	125	100	125	ns
2	tCYC	System Clock Period (= T)	50	62.5	50	62.5	ns
3	t _{CL}	CLK Low Width	$0.5 \times T - 15$		10	16	ns
4	t _{CH}	CLK High Width	$0.5 \times T - 15$		10	16	ns
5-1	t _{DW}	D0 to D31 Valid $\rightarrow \overline{WRx}$ Rise at $@$ waits	$1.25 \times T - 35$		28	43	ns
5-2	t _{DW3}	D0 to D31 Valid $\rightarrow \overline{WRx}$ Rise at 1 wait	$2.25 \times T - 35$		78	106	ns
6-1	t _{WW}	WRx Low Width at 0 waits	$1.25 \times T - 30$		33	48	ns
6-2	t _{WW3}	WRx Low Width at 1 wait	$2.25\times T-30$		83	111	ns
7	t _{AW}	A0 to A23 Valid $\rightarrow \overline{WRx}$ Fall	$0.5\times T-20$		5	11	ns
8	t _{WK}	$\overline{WRx} \; Fall \to CLK \; Fall$	$0.5\times T-20$		5	11	ns
9	t _{WA}	$\overline{\text{WRx}}$ Rise $\rightarrow AO$ to A23 Hold	$0.25 \times T - 5$		8	11	ns
10	t _{WD}	WRx Rise -> DO to D31 Hold	$0.25 \times T - 5$		8	11	ns
11	t _{APW}	A0 to A23 Valid PORT, Output		2.0 imes T + 70	170	195	ns
12	t _{TK}	WAIT Setup Time	15		15	15	ns
13	t _{KT}	WAIT Hold Time	5		5	5	ns
14	t _{RDO}	RD Rise > Do to D15 Output	0.5 imes T - 5		20	26	ns

AC Condition

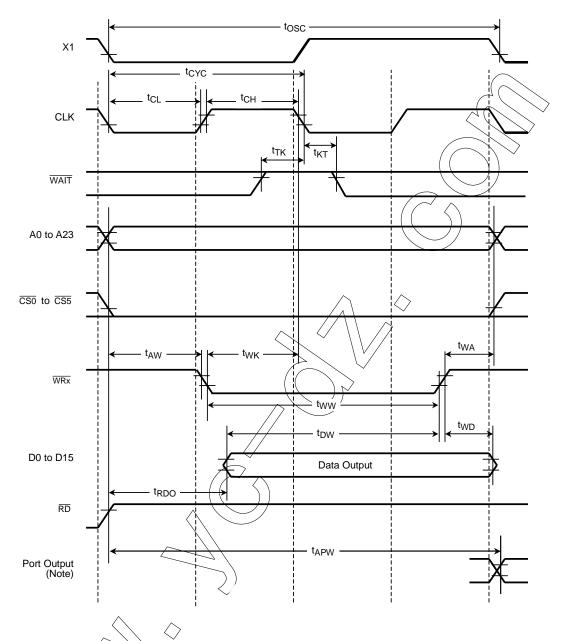
Input:

Output: P0 to P3 (D0 to D31), P4 to P6 (A0 to A23), P70 (RD), P71 to P74 (WRx)

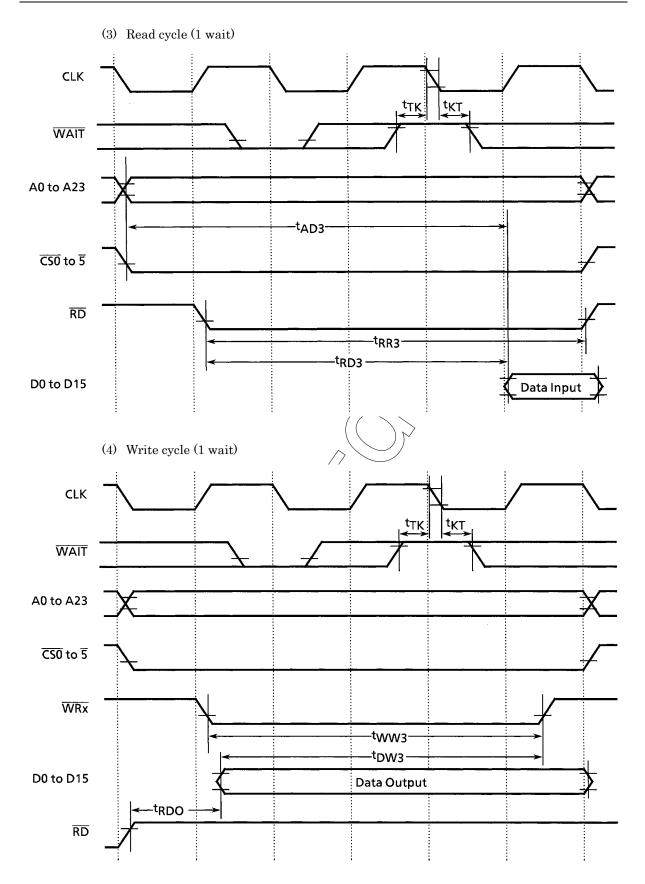

High = 2.0 V, Low = 0.8 V, CL = 50 pF

High = 2.4 V, Low =
$$0.45$$
 V

Others


High = 0.8 Vcc, Low = 0.2 Vcc

(1) Read cycle (0 waits)

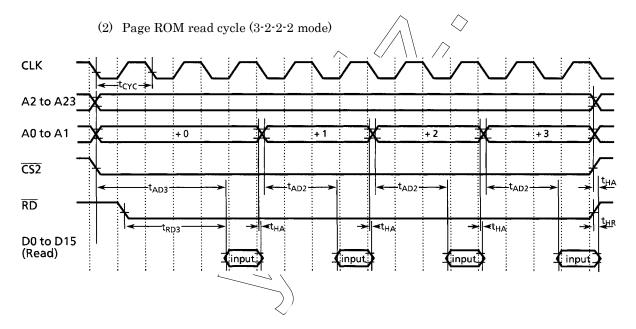


- Note 1: The phase relation between X1 input signal and the other signals is unsettled. The timing chart above is an example.
- Note 2: Since the CPU accesses the internal area to read data from a port, the control signals of external pins such as RD and CS are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

(2) Write cycle (0 waits)

- Note 1: The phase relation between X1 input signal and the other signals is unsettled. The timing chart above is an example.
- Note 2: WRx shows WRL, WRH.
- Note 3: Since the CPU accesses the internal area to write data to a port, the control signals of external pins such as WR and CS are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

4.3.2 Page ROM Read Cycle


No.	Symbol	Parameter	Min	Max	@20 MHz	@16 MHz	Unit
1	tcyc	System Clock Period (= T)	50	62.5	50	62.5	ns
2	t _{AD2}	A0, A1 \rightarrow D0 to D15 Input		1.0 × T-50	50	75	ns
3	t _{AD3}	A2 to A23 \rightarrow D0 to D15 Input		3.0×T-50	100	138	ns
4	t _{RD3}	$\overline{\text{RD}}$ Fall \rightarrow D0 to D15 Input		2.5×T-45	80	111	ns
5	t _{HA}	A0 to A23 Invalid \rightarrow D0 to D15 Hold	0		0	0	ns
6	t _{HR}	$\overline{\text{RD}}$ Rise \rightarrow D0 to D15 Hold	0		0	0	ns

(1) $3-2-2-2 \mod 2$

AC Condition

Output: P4 to P6 (A0 to A23), P70 (RD)

High = 2.0 V, Low = 0.8 V, CL = 50 pF CLK, P82 ($\overline{CS2}$) High = 2.0 V, Low = 0.8 V, CL = 50 pF Input: P0 to P1 (D0 to D15) High = 2.4 V, Low = 0.45 V

 $\langle \rangle$

No.	Symbol	Parameter	Min	Max	@ 20 MHz	@ 16 MHz	Unit
1	tCYC	System Clock Period (= T)	50	62.5	50	62.5	ns
2	t _{RC}	RAS Cycle Time	3.00 imes T		150	188	ns
3	t _{PC}	Page Mode Cycle Time	2.00 × T		100	125	ns
4-1	tRAC	RAS Access Time		1.75 × T – 45	43	64	ns
4-2	t _{RAC4}	RAS Access Time @ 4 Clock Access		2.75 imes T - 45	93	127	ns
5	tCAC	CAS Access Time		1.00 imes T - 40	10	(23)	ns
6-1	t _{AA}	Column Address Access Time		1.25 imes T - 45	18	33	ns
6-2	t _{AA2}	Column Address Access Time @ Page Mode		$2.00\times T-45$	55	80	ns
6-3	t _{AA4}	Column Address Access Time @ 4 Clock Access		2.25 × T – 45	68	96	ns
7	t _{CPA}	CAS Pre-charge Access Time		2.00 × T – 45/	55	80	ns
8	tOFF	Input Data Hold Time	0	((0))	0	ns
9	t _{RP}	RAS Pre-charge Time	1.25 × T – 20		43	58	ns
10-1	t _{RAS}	RAS Width	1.75 × T – 20		68	89	ns
10-2	t _{RAS4}	RAS Width @ 4 Clock Access	2.75 × T – 20		118	152	ns
11	t _{RSH}	RAS Hold Time	1.00 × T – 20	~ ^	30	43	ns
12	tRHCP	CAS Pre-charge to RAS Hold Time	2.00 × T – 20	$ \uparrow $	80	105	ns
13-1	tCSH	CAS Hold Time	1.75 × T ≠ 20	$ \land$	68	89	ns
13-2	tCSH4	CAS Hold Time @ 4 Clock Access	2.75 × T – 20		118	152	ns
14	t _{CAS}	CAS Width	1.00×T-20	17	30	43	ns
15	t _{RCD}	RAS – CAS Delay Time	0/75 × T - 17		21	30	ns
16	t _{RAD}	RAS – Column Address Delay Time	$(\langle \rangle)$	0.50 × T + 20	45	51	ns
17	tCRP	CAS – RAS Pre-charge Time).25 × T - 20		43	58	ns
18-1	t _{CP}	CAS Pre-charge Time @ Refresh	0.50 × T – 15		10	16	ns
18-2	t _{CP2}	CAS Pre-charge Time @ Page Mode	1.00 imes T - 20		30	43	ns
19	t _{ASR}	Row Address Set-up Time	1.25 × T – 40		23	38	ns
20	t _{RAH}	Row Address Hold Time	0.50 × T – 15		10	16	ns
21-1	tASC	Column Address Set-up Time	0.25 × T – 12		1	4	ns
21-2	t _{ASC2}	Column Address Set-up Time @ Page Mode	1.00 imes T - 20		30	43	ns
22	t _{CAH}	Column Address Hold Time	1.00 × T – 20		30	43	ns
23	t _{AR}	Column Address Hold Time from RAS	1.75 × T – 20		68	89	ns
24	t _{RAL}	Column Address RAS Read Time	1.25 × T – 20		43	58	ns
25	t _{RCS}	Read Command Set-up Time	2.00 imes T - 40		60	85	ns
	t _{RCH}	Read Command Hold Time from CAS	0.50 imes T - 20		5	11	ns
	t _{RRH}	Read Command Hold Time from RAS	0.50 imes T - 20		5	11	ns
	tWCH	Write Command Hold Time	1.00 × T – 20		30	43	ns
	tWCR	Write Command Hold Time from RAS	1.75 × T – 20		68	89	ns
	t _{WP}	Write Command Time	1.50 × T – 20		55	74	ns
		Write Command RAS Read Time	1.50 imes T - 20		55	74	ns
32	tCWL	Write Command CAS Read Time	1.50 × T – 20		55	74	ns
33		Data Output Set-up Time	1.50 × T – 30		45	58	ns

4.3.3 DRAM Bus Cycle

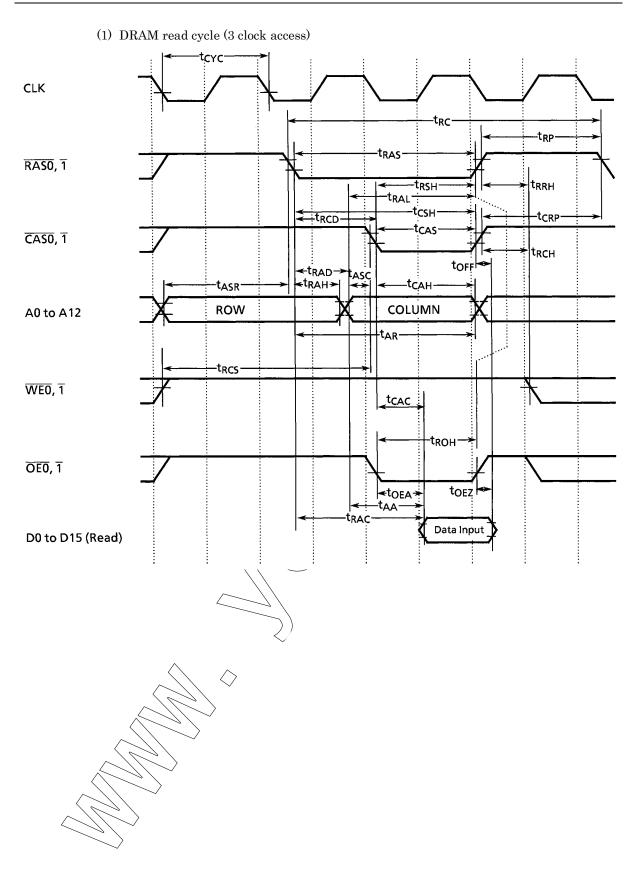
No.	Symbol	Parameter	Min	Max	@20 MHz	@16 MHz	Unit
34	t _{DH}	Data Output Hold Time	1.00×T-25		25	38	ns
35	t _{DHR}	Data Output Hold Time from RAS	1.75×T-5		83	104	ns
36	twcs	Write Command Set-up Time	0.50×T-20		5	11	ns
37	t _{CSR}	CAS Set-up Time	0.75×T-20		18	27	ns
38	t _{CHR}	CAS Hold Time	1.75×T-20		68	89	ns
39	t _{RPC}	RAS Pre-charge CAS Active Time	0.50 × T-20		5	11	ns
40	t _{ROH}	RAS Hold Time from OE	1.00 × T-20		30	43	ns
41	toea	OE Access Time		1.00×T-40	10	23	ns
42	toez	Input Data Hold Time from OE	0		0	0	ns
43	t _{RPS}	RAS Pre-charge Time @ Release Self Refresh Cycle	2.25×T-20		93	121	ns
44	t _{CHS}	CAS Hold Time @ Release Self Refresh Cycle	- 15		- 15	- 15	ns

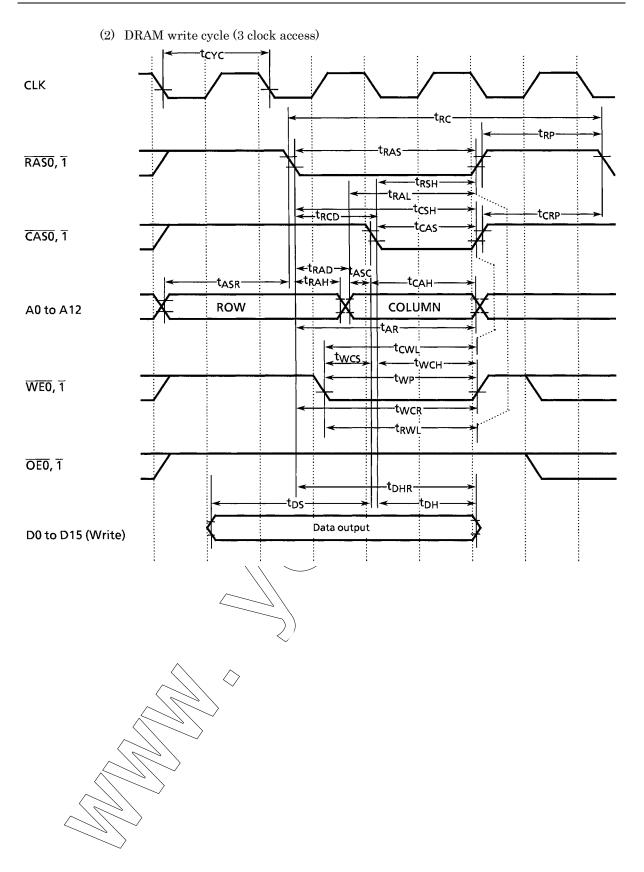
AC Condition

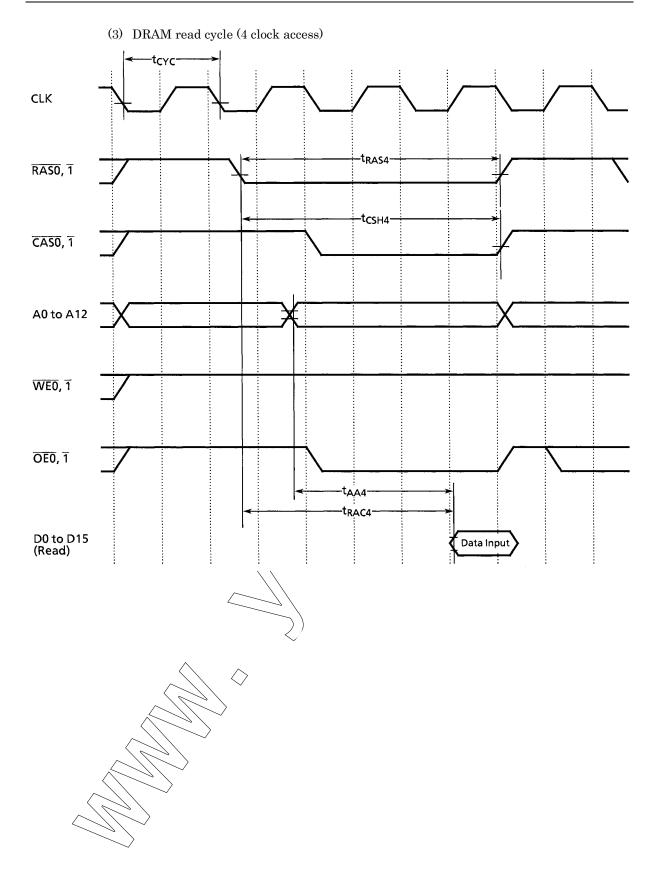
Output: P0 to P1 (D0 to D15), P4 to P6 (A0 to A23), P70 (RD), P71 to R74 (WRx)

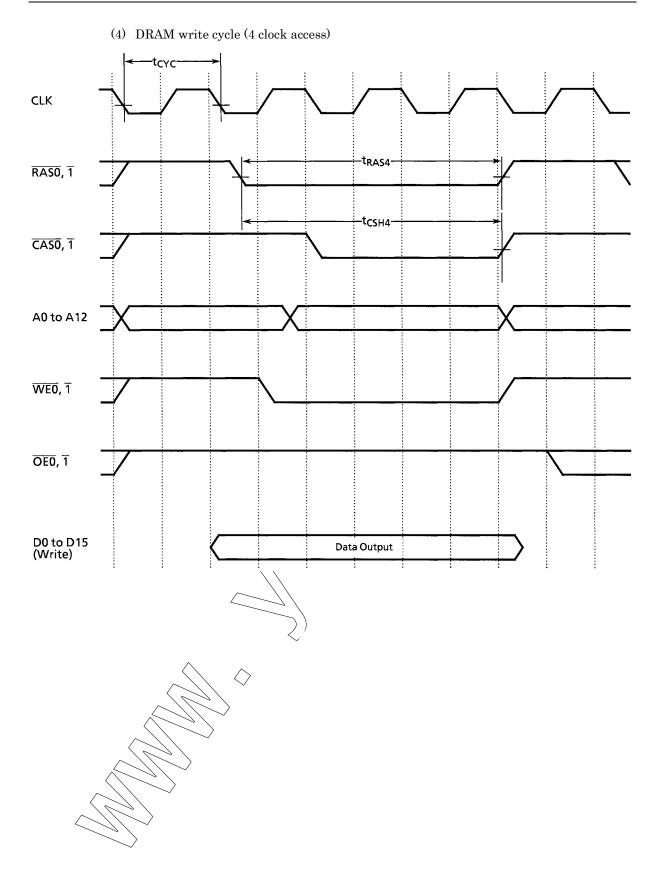
High = 2.0 V, Low = 0.8 V, CL = 50 pF

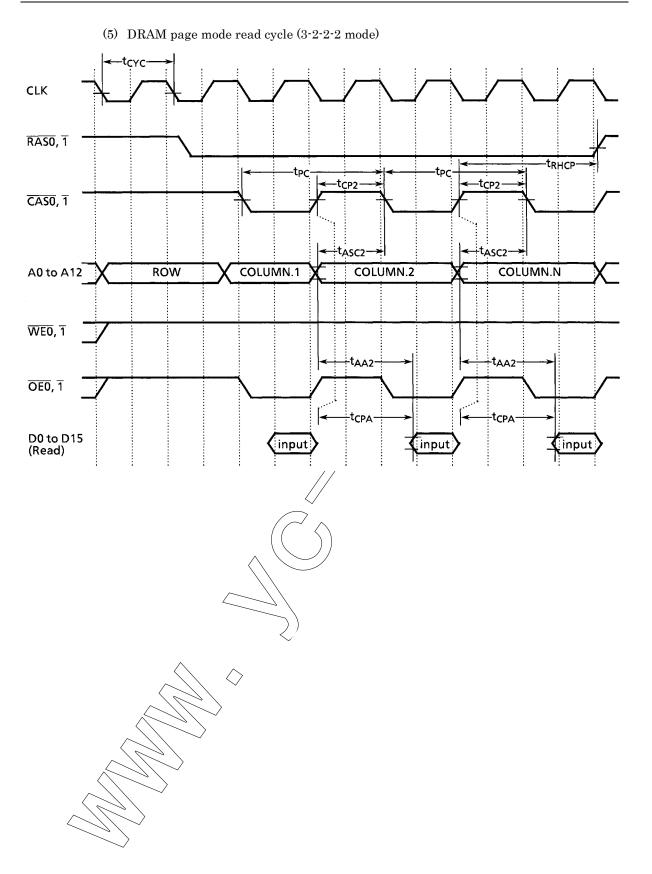
Others

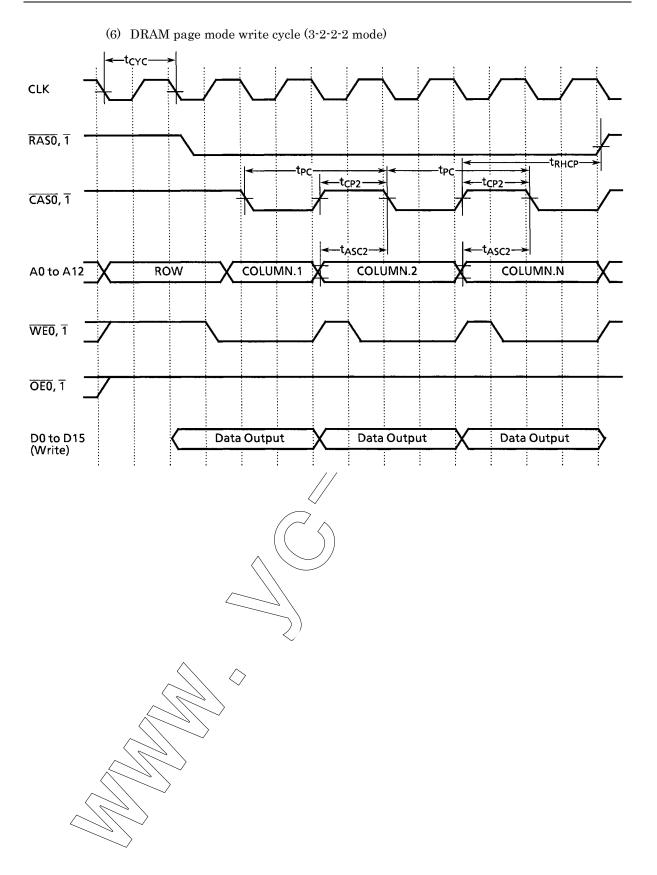

High = 2.0 V, Low = 0.8 V, CL = 50 pF

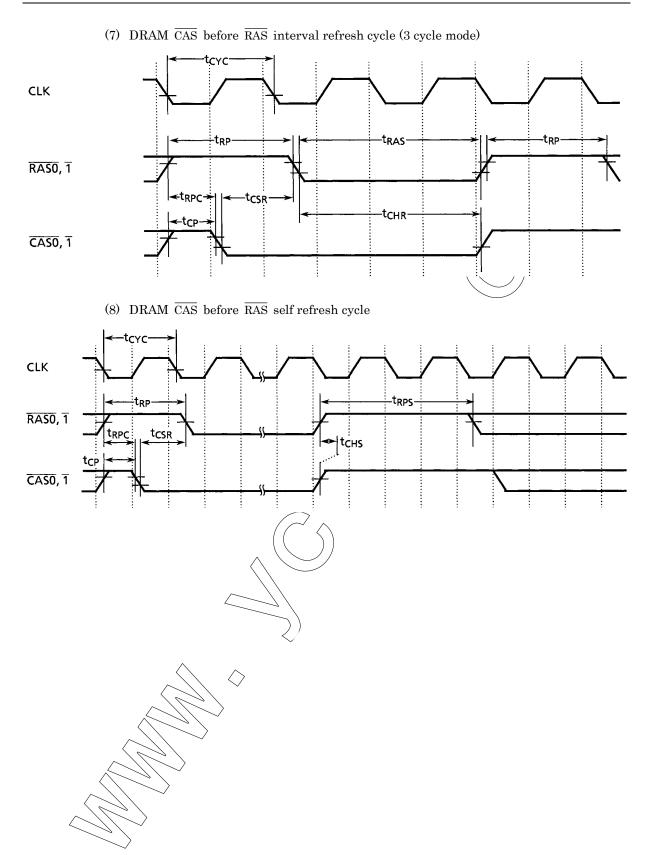

Input: P0 to P1 (D0 to D15)

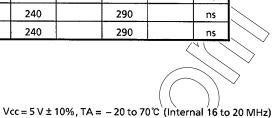

High = 2.4 V, Low = 0.45 V


Others


High = 0.8 Vcc, Low = 0.2 Vcc







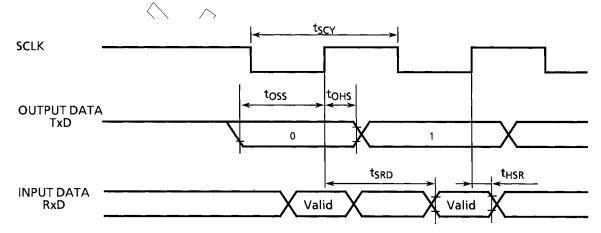
Event Counter (TI4, TI5, TI6, TI7, TI8, TI9, TIA, TIB) 4.4

1144	ЛНz	16 MHz		20 MHz		Varia	Parameter	Symbol
Unit	Max	Min	Max	Min	Max	Min	Falanetei	Symbol
ns		600		500		8T + 100	Clock cycle	t _{VCK}
ns		290		240		4T + 40	Clock low-level pulse width	t _{VCKL}
ns		290		240		4T + 40	Clock high-level pulse width	t _{VCKH}

4.5 Serial Channel Timing

(1) SCLK input mode (I/O interface mode)

Symbol	Parameter	Variable			ИHz	16 MHz		Unit	
Symbol		Min	Max	Min	Max	Min	Max	Unit	
t _{SCY}	SCLK cycle	16T		0.8		1.0		μs	
t _{OSS}	Output Data \rightarrow Rising edge of SCLK	t _{SCY} /2 – 5T – 50		100		138		ns	
t _{ohs}	SCLK rising edge \rightarrow Output Data hold	5T – 100		150		213		ns	
t _{HSR}	SCLK rising edge \rightarrow Input Data hold	0		0		0		ns	
t _{SRD}	SCLK rising edge \rightarrow effective data input		t _{SCY} – 5T – 100		450		588	ns	


(2) SCLK output mode (I/O interface mode) $Vcc = 5 V \pm 10\%$, TA = -20 to 70°C (Internal 16 to 20 MHz)

Symbol	Parameter	Varia	able	20	MHz	161	ИНz	11
Symbol		Min	Max	Min	Max	Min	Max	Unit
t _{SCY}	SCLK cycle (programmable)	1 6 T	8192T	0.8	409.6	1.0	512	μs
t _{oss}	Output Data \rightarrow SCLK rising edge	t _{SCY} – 2T – 150		550		725		ns
t _{OHS}	SCLK rising edge \rightarrow Output Data hold	2T – 80		20		45		ns
t _{HSR}	SCLK rising edge \rightarrow Input Data hold	0		0		0		ns
t _{SRD}	SCLK rising edge \rightarrow effective data input		t _{SCY} – 2T – 150		550		725	ns

(3) SCLK input mode (UART mode)

′ Vcc = 5 V ± 10%, TA = − 20 to 70℃ (Internai 16 to 20 MHz)

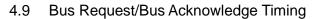
Symbol	Parameter	Varia	Variable		20 MHz		16 MHz	
5,		Min	Max	Min	Max	Min	Max	Unit
t _{SCY}	SCLK cycle	4T + 20		220		270		ns
t _{SCYL}	SCLK Low level Pulse width	2T + 5		105		130		ns
t _{SCYH}	SCLK High level Pulse width	2T + 5		105		130		ns

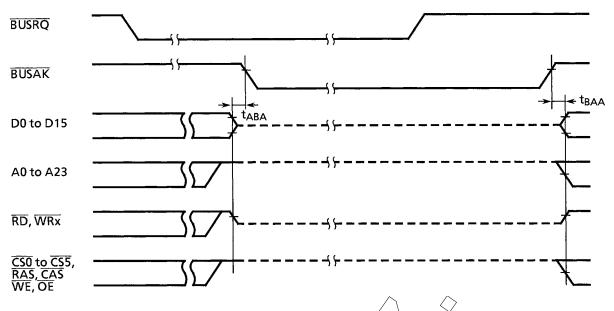
10-Bit AD Conversion Characteristics 4.6

		Vcc = 5 V ± 10	0%,TA = - 20 te	o 70℃ (Internal 16	to 20 MHz
Symbol	Parameter	Min	Тур	Max	Unit
VREFH	Analog reference voltage (High)	V _{CC} -0.2 V	Vcc	Vcc	·
VREFL	Analog reference voltage (Low)	V _{SS}	Vss	V _{SS} + 0.2 V	v
VAIN	Analog input voltage range	VREFL		VREFH	
IREF	Analog current for analog reference voltage				
(VREFL = 0 V)	$V_{CC} = 5V \pm 10\%$ <vrefon> = 1</vrefon>		0.5	1.5	mA
	$V_{CC} = 5V \pm 10\% \qquad \langle VREFON \rangle = 0$		0.02	5.0	μA
Error (Quantize error of ± 0.5 LSB not included)	$V_{CC} = 5V \pm 10\%$ Total error		± 3.0	±6	LSB

Note 1:1LSB = (VREFH - VREFL)/1024 [V]

Note 2: Power supply current ICC from the digital power supply includes the power supply from the AVCC pin.


8-Bit DA Conversion Characteristics 4.7


			= 5 K ± 10%,	TA = -20 to 7	0°C (Internal 1	6 to 20 MHz)
Symbol	Parameter	Condition	Min	Тур	Max	Unit
DAREFH	Analog reference voltage (+)		4.0		V _{CC}	V
DAREFL	Analog reference voltage (-)		V _{SS}		V _{SS}	v
	Total error	RL = 2.4 KΩ		2.0	4.0	LSB
	Output voltage range	$RL = 2.4 \text{ K}\Omega$	$V_{SS} + 0.5$		V _{SS} – 0.5	V
	Settling time	$RL = 2.4 \text{ K}\Omega,$ $CL = 100 \text{ pF}$			5	μS
DAC	Output impedance				5	Ω
output mode	Resistive load	$V_{SS} + 0.5 \le DAOUT \le V_{CC} - 0.5$	2.4			kΩ

Note: RL is the resistance load of the DA converter output in.

4.8 Interrupt Operation

		$Vcc = 5 V \pm 10\%$, TA = - 20 to 70°C (internal 16 to 20 MHz)							
Symbol	Parameter	Variable		20 MHz		16 MHz			
		Min	Max	Min	Max	Min	Max	Unit	
t _{INTAL}	NMI, INTO Low level Pulse width	4T		200		250		ns	
t _{INTAH}	NMI, INTO High level Pulse width	4T		200		250		ns	
t _{INTBL}	INT4 toINTB Low level Pulse width	8T + 100		500		600		ns	
t _{INTBH}	INT4 to INTB High level Pulse width	8T + 100		500		600		ns	

		$Vcc = 5 V \pm 10\%$, TA = $-20 \text{ to } 70 \degree$ (Internal 16 to 20 MHz)							
Symbol	Parameter	V	Variable		20 MHz		16 MHz		
		Min	Max	Min	Max	Min	Max	Unit	
t _{ABA}	Floating time to BUSAK fall	0	8 0	0	80	0	80	ns	
t _{BAA}	Floating time to BUSAK rise	0	80	0	80	0	80	ns	

Note: The bus will be released after the WAPT request is inactive, when the BUSRQ is set to "Low" during "wait" cycle.