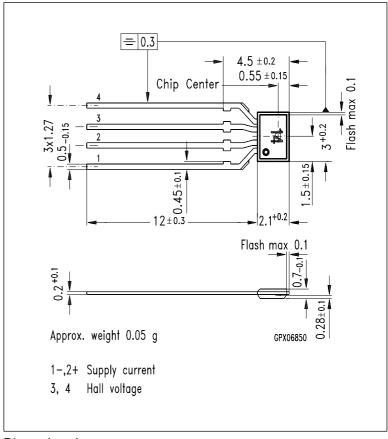
SIEMENS


Hall Sensor KSY 14

Features

- High sensitivity
- High operating temperature
- Small linearity error
- Low offset voltage
- Low TC of sensitivity and internal resistance
- Ultra-flat plastic miniature package
- Low inductive zero component
- Package thickness 0.7 mm
- Connections from one side of the package

Typical applications

- Current and power measurement
- Magnetic field measurement
- Control of brushless DC motors
- Rotation and position sensing
- Measurement of diaphragm
- Movement for pressure sensing

Dimensions in mm

Туре	Marking	Ordering Code
KSY 14	14	Q62705-K227

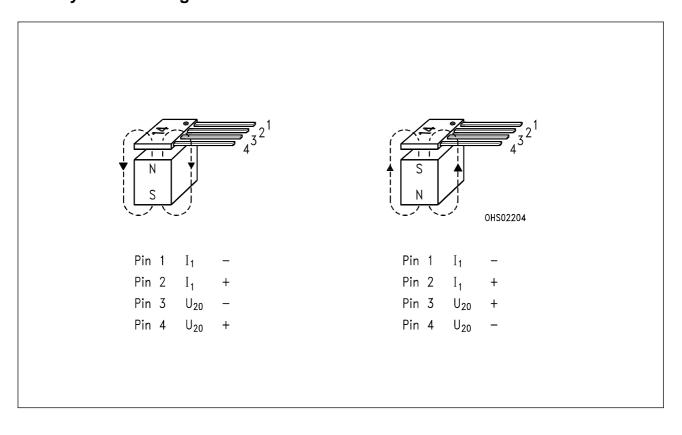
The KSY 14 is an ion-implanted Hall sensor generator in a mono-crystalline GaAs material, built into an extremely flat plastic package (SOH). It is outstanding for a high magnetic sensitivity and low temperature coefficients. The 0.35×0.35 mm² chip is mounted onto a non-magnetic leadframe.

Maximum ratings

Parameter	Symbol	Value	Unit
Operating temperature	T_{A}	- 40 + 175	°C
Storage temperature	$T_{ m stg}$	− 50 + 180	°C
Supply current	I_1	7	mA
Thermal conductivity soldered, in air	$G_{thA} \ G_{thC}$	≥ 1.5 ≥ 2.2	mW/K mW/K

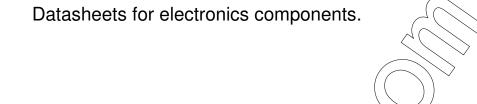
Characteristics ($T_{\rm A}$ = 25 °C)

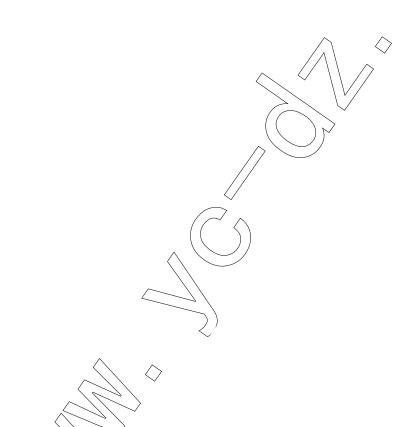
Nominal supply current	I_{1N}	5	mA
Open-circuit sensitivity	K_{B0}	190260	V/AT
Open-circuit Hall voltage $I_1 = I_{1N}, B = 0.1 T$	V_{20}	95130	mV
Ohmic offset voltage $I_1 = I_{1N}, \ B = 0 \ T$	V_{R0}	≤±20	mV
Linearity of Hall voltage $B = 00.5 \text{ T}$ $B = 01 \text{ T}$	F_{L}	≤±0.2 ≤±0.7	% %
Input resistance $B = 0$ T	R_{10}	9001200	Ω
Output resistance $B = 0$ T	R_{20}	9001200	Ω
Temperature coefficient of the open-circuit Hall voltage $I_1 = I_{1N}$, $B = 0.1$ T	TC_{V20}	~ - 0.03 0.07	%/K
Temperature coefficient of the internal resistance $B = 0$ T	<i>TC</i> _{R10, R20}	~ 0.10.18	%/K
Change of offset voltage within the temperature range	ΔV_{R0} 1)	≤ 2	mV
Inductive zero component $I_{1N} = 0$	$A_2^{(2)}$	0.16	cm ²
Noise figure	F	~ 10	dB


¹⁾ AQL: 0.65

²⁾ With time varying induction there exists an inductive voltage V_{ind} between the Hall voltage terminals (supply current $I_1 = 0$): $V_{\text{ind}} = A_2 \times dB/dt \times 10^{-4}$ with V(V), A_2 (cm²), B(T), t(s)

Connection of a Hall sensor with a power source


Since the voltage on the component must not exceed 10 V, the connection to the constant current supply should only be done via a short circuit by-pass. The by-pass circuit-breaker shall not be opened before turning on the power source, in order to avoid damage to the Hall sensor due to power peaks.


Polarity of Hall voltage

This datasheet has been download from:

 $\underline{www.datasheet catalog.com}$

