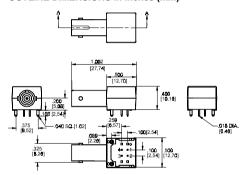
HFE4874


Next Generation High Power LEDs, Metal ST-LP2 Package

FEATURES

- Industry standard ST® fiber connector
- 850 nm GaAlAs LED
- · High reliability construction
- Metal barrel and housing
- · Wave solderable
- Straight metal package provides enhanced durability and heat dissipation over plastic packages
- ST-LP2 package

OUTLINE DIMENSIONS in inches (mm)

DESCRIPTION

Next Generation LEDs are designed for use in IEEE 802.3 Ethernet and IEEE 802.5J Token Ring applications such as repeaters, bridges, hubs, routers, switches and gateways. The devices are GaAlAs 850 nm LEDs which are designed to efficiently couple optical power into different fiber sizes ranging from

50/125 micron to 200/240 micron. They typically couple -12.0 dBm into 62.5/125 micron cable at 60 mA peak. The LED component is eletrically isolated from the connector barrel. The mechanical construction uses a high reliability ST-LP2 fiber optic connector/housing designed to be easily mounted on printed circuit boards without the need for additional hardware. This component is specifically designed to provide performance and flexibility to the designer and should be driven with a 50% duty cycle at 60 mA to 100 mA peak forward current for the electrical input signal.

Next Generation LEDs have been updated and improved from existing Fiber Optic LEDs. The Next Generation LEDs provide an improved lensing scheme which makes the fiber optic coupling more repeatable. The LEDs are manufactured with an automated process that eliminates variable introduced by a manual process. The Next Generation LEDs are pin for pin compatible with existing ST-LP2 LEDs.

ODIM_207.cdr

Pinout

- 1. Anode
- 2. Cathode
- 3. Anode
- 4. Anode

HFE4874

Next Generation High Power LEDs, Metal ST-LP2 Package

ELECTRO-OPTICAL CHARACTERISTICS (T_A = -40 to +85°C unless otherwise specified)

PARAMETER	SYMBOL	MIN	TYP (1	MAY	UNITS	TEST CONDITIONS
		IVIIIV		WAA		
Fiber Coupled Powe (HFE4874-222)	Poc				dBm	I _F =100 mA Peak 50/125μm
Peak, T _A =25°C		-17.3	-13.8	-11.4		fiber, NA = 0.20
Peak over temp.	_	-18.9		-10.8	ı.	
Fiber Coupled Power	Poc				dBm	I _F = 60 mA Peak 50/125 μm
Peak, T _A =25°C		-18.8	-15.8	-13.8		fiber, NA = 0.20
Peak over temp.	-	-19.8		-12.8		B
Fiber Coupled Power	Poc				dBm	I _F = 100 mA Peak 62.5/125 μm
Peak, T _A =25°C		-13.5	-10.0	-7.6		fiber, NA = 0.275
Peak over temp.	_	-15.1		-7.0		
Fiber Coupled Power	Poc				dBm	I _F = 60 mA Peak 62.5/125 μm
Peak, T _A =25°C		-15.0	-12.0	-10.0		fiber, NA = 0.275
Peak over temp.		-16.0		-9.0		
Fiber Coupled Powe (HFE4874-223)	Poc				dBm	I _F = 60 mA Peak 62.5/125 μm
Peak, T _A =25°C		-15.0	-10.5	-9.0		fiber, NA = 0.275
Peak over temp.		-16.0		-8.0		
Forward Voltage	V_{F}		1.84		V	$I_F = 100 \text{ mA}$
	VF	1.48	1.70	2.09	V	$I_F = 60 \text{ mA}$
Forward Voltage Temperature	$\Delta V_F/\Delta T$		-0.18		mV/°C	$I_F = 100 \text{ mA}$
Coefficient	$\Delta V_F/\Delta T$		-0.22		mV/°C	$I_F = 60 \text{ mA}$
Reverse Voltage	B _{VR}	1.8	3.8		V	$I_R = 10 \mu A, T_A = 25^{\circ}C$
Peak Wavelength	λ _P	810	856	895	nm	$I_F = 100 \text{ mA DC}$
	λ _P	810	850	885	nm	$I_F = 60 \text{ mA DC}$
Spectral Bandwidth (FWHM)			55		nm	$I_F = 100 \text{ mA DC}$
			50		nm	$I_F = 60 \text{ mA DC}$
Response Time	t _R /t _F		4.0	6.3	ns	I _F = 60 mA peak, No Prebias
Po Temperature Coefficient	$\Delta P_0/\Delta T$		-0.017		dB/°C	$I_F = 100 \text{ mA}$
	$\Delta P_0/\Delta T$		-0.006		dB/°C	$I_F = 60 \text{ mA}$
Series Resistance	rs		4.0		Ω	DC
Device Capacitance	С		40		pF	$V_R = 0 V, f = 1 MHz$
Thermal Resistance			260		°C/W	Heat sinked

Notes

- 1. Typical specifications are for operations at T_C= 25°C.
- 2. Poc is measured using a 10 meter mode stripped cable which is intended to accurately represent a working system.

ABSOLUTE MAXIMUM RATINGS

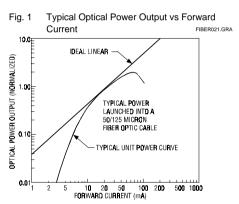
Storage temperature -55 to +85°C
Case operating temperature -40 to +85°C
Lead solder temperature 260°C, 10 s
Reverse voltage 1.8 V
Continuous forward current (heat sinked)

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

HFE4874

Next Generation High Power LEDs, Metal ST-LP2 Package

ORDER GUIDE			
Description	Catalog Listing		
Straight metal barrel and housing, standard power	HFE4874-222		
Straight metal barrel and housing, extended power	HFE4874-223		


WARNING

Under certain application conditions, the infrared optical output of this device may exceed Class 1 eye safety limits, as defined by IEC 825-1 (1993-11). Do not use magnification (such as a microscope or other focusing equipment) when viewing the device's output.

CAUTION

The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation to equipment, take normal ESD precautions when handling this product.

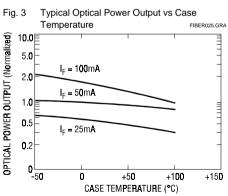
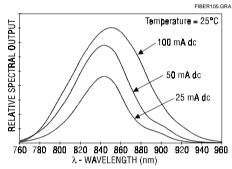



Fig. 2 Typical Spectral Output vs Wavelength

All Performance Curves Show Typical Values