SIEMENS

Hall Sensor

Preliminary Data

Features

- High sensitivity
- High operating temperature
- Small linearity error
- Low offset voltage
- Low TC of sensitivity
- Specified TC of offset voltage
- Low inductive zero component
- Package thickness 0.7 mm
- Connections from one side of the package

Typical Applications

- Current and power measurement
- Magnetic field measurement
- Control of brushless DC motors Rotation and position sensing
- Measurement of diaphragm
- Movement for pressure sensing

Dimensions in mm

Туре	Marking	Ordering Code
KSY 44	44	Q62705-K265

The KSY 44 is a MOVPE¹⁾ Hall sensor in a mono-crystalline GaAs material, built into an extremely flat plastic package (SOH). It is outstanding for a high magnetic sensitivity and low temperature coefficients. The 0.35×0.35 mm² chip is mounted onto a non-magnetic leadframe.

1) Metal Organic Vapour Phase Epitaxy

Maximum Ratings

Parameter	Symbol	Value	Unit
Operating temperature	T _A	- 40+ 175	°C
Storage temperature	T _{stg}	- 50+ 180	°C
Supply current	I ₁	10	mA
Thermal conductivity soldered, in air	$G_{ ext{thA}} \ G_{ ext{thC}}$	≥ 1.5 ≥ 2.2	mW/K mW/K

Characteristics (T_A = 25 °C)

I _{1N}	7	mA
K _{B0}	150265	V/AT
V ₂₀	105185	mV
V _{R0}	≤±15	mV
FL	$\leq \pm 0.2$ $\leq \pm 0.7$	% %
<i>R</i> ₁₀	600900	Ω
R ₂₀	10001500	Ω
TC _{V20}	~ - 0.03	%/K
<i>TC</i> _{R10, R20}	~ + 0.3	%/K
TC _{VR0}	~ - 0.3	%/K
A ₂ ¹⁾	0.16	cm ²
$ \begin{array}{c} dV_0{}^{2)} \\ \Delta V_0{}^{3)} \end{array} $	≤ 0.3 ≤ 0.1	mV mV
F	~ 10	dB
	$ \begin{array}{c c} I_{1N} & \\ \hline K_{B0} & \\ \hline V_{20} & \\ \hline V_{R0} & \\ \hline F_{L} & \\ \hline F_{L} & \\ \hline R_{10} & \\ \hline R_{20} & \\ \hline TC_{V20} & \\ \hline TC_{V20} & \\ \hline TC_{V20} & \\ \hline TC_{VR0} & \\ \hline A_{2}^{1)} & \\ \hline dV_{0}^{2)} & \\ \Delta V_{0}^{3)} & \\ \hline F & \\ \end{array} $	$\begin{array}{c c c} I_{1\mathrm{N}} & 7 \\ K_{\mathrm{B0}} & 150265 \\ V_{20} & 105185 \\ \hline V_{\mathrm{R0}} & \leq \pm 15 \\ \hline F_{\mathrm{L}} & \leq \pm 0.2 \\ \leq \pm 0.7 \\ \hline R_{10} & 600900 \\ \hline R_{20} & 10001500 \\ \hline TC_{\mathrm{V20}} & \sim -0.03 \\ \hline TC_{\mathrm{V20}} & \sim -0.3 \\ \hline TC_{\mathrm{VR0}} & \sim -0.3 \\ \hline TC_{\mathrm{VR0}} & 0.16 \\ \hline dV_{0}^{2)} & \leq 0.3 \\ \Delta V_{0}^{3)} & \leq 0.1 \\ \hline F & \sim 10 \end{array}$

1) With time varying induction there exists an inductive voltage V_{ind} between the Hall voltage terminals (supply current $I_1 = 0$):

$$V_{\text{ind}} = A_2 \times dB/dt \times 10^{-4}$$
 with $V(V)$, A_2 (cm²), $B(T)$, $t(s)$

2)
$$dV_0 = |V_0(t = 1s) - V_0(t = 0.1 s)|$$

3)
$$\Delta V_0 = |V_0(t = 3m) - V_0(t = 1 \text{ s})|$$

Connection of a Hall Sensor with a Power Source

Since the voltage on the component must not exceed 10 V, the connection to the constant current supply should only be done via a short circuit by-pass. The by-pass circuit-breaker shall not be opened before turning on the power source, in order to avoid damage to the Hall sensor due to power peaks.

Polarity of Hall Voltage

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

 \Diamond