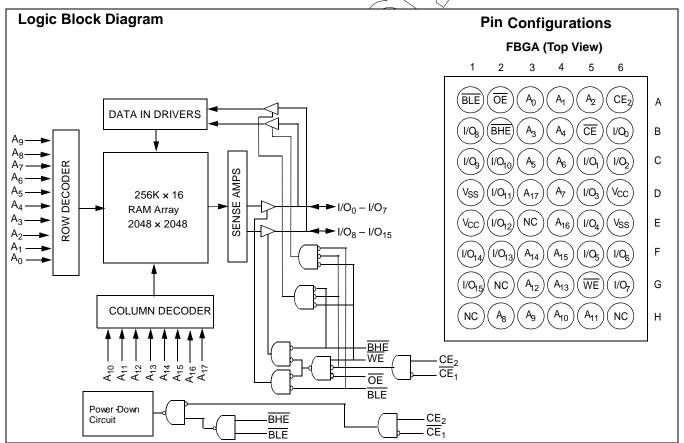


256K x 16 Static RAM

Features

- Low voltage range: 2.7V-3.6V
- Ultra-low active, standby power
- Easy memory expansion with CE₁ and CE₂ and OE features
- TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- CMOS for optimum speed/power


Functional Description[1]

The WCMA4016U1X is a high-performance CMOS static RAM organized as 262,144 words by 16 bits. This device features advanced circuit design to provide ultra-low active current and standby current. This is ideal for providing more battery life in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The $\underline{\text{dev}}$ ice can also be put into standby mode when deselected $\underline{\text{(CE}_1 HIGH or CE}_2$ LOW or

both BHE and BLE are HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected (CE₁HIGH or CE₂ LOW), outputs are disabled (OE HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or during a write operation (CE₁ LOW, CE₂ HIGH and WE LOW).

Writing to the device is accomplished by taking Chip Enables (\overline{CE}_1 LOW and \overline{CE}_2 HIGH) and Write Enable (\overline{WE}) input LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A_0 through A_{18}). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A_0 through A_{18}).

Reading from the device is accomplished by taking Chip Enables ($\overline{\text{CE}}_1$ LOW and CE_2 HIGH) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this datasheet for a complete description of read and write modes.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......–55°C to +125°C

Supply Voltage to Ground Potential.....-0.5V to +4.6V

DC Voltage Applied to Outputs in High Z State $^{[1]}$ –0.5V to V $_{\rm CC}$ + 0.5V

DC Input $Voltage^{[1]}$-0.5V to V_{CC} + 0.5V

Static Discharge Voltage......>2100V (per MIL-STD-883, Method 3015) Latch-Up Current >200 mA

Operating Range

Device	Range	Ambient Temperature	v _{cc}
WCMA4016U1X	Industrial	-40°C to +85°C	2.7V to 3.6V

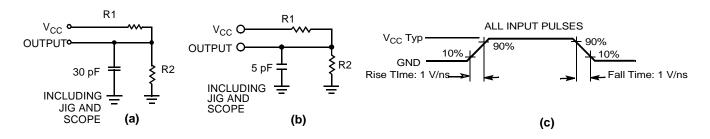
Product Portfolio

						Pov	ver Dissipati	on (Indus	trial)
		V _{CC} Range			Speed	Operati	ing (I _{CC})	Standl	oy (I _{SB2})
Product	V _{CC(min.)}	V _{CC(typ.)} ^[2]	V _{CC(max.)}	Power	(ns)	Typ. ^[2]	Maximum	Typ. ^[2]	Maximum
WCMA4016U1X	2.7V	3.0V	3.6V	LL	70	7 mA /	15 mA	2 μΑ	20 μΑ

Electrical Characteristics Over the Operating Range

				V	VCMA4016	J1X		
Parameter	Description	Test Condit	Test Conditions			Max.	Unit	
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	$V_{OH} = -1.0 \text{ mA}$ $V_{CC} = 2.7 \text{V}$				V	
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$			0.4	V	
V _{IH}	Input HIGH Voltage		$V_{CC} = 3.6V$	2.2		V _{CC} + 0.5V	V	
V _{IL}	Input LOW Voltage		$V_{CC} = 2.7V$	-0.5		0.8	V	
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	•	-1	±1	+1	μΑ	
l _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Ou	tput Disabled	-1	+1	+1	μΑ	
I _{CC}	V _{CC} Operating Supply Current	$\label{eq:lower_lower} \begin{array}{ll} I_{OUT} = 0 \text{ mA,} & V_{CC} = 3.6V \\ f = f_{MAX} = 1/t_{RC}, \\ \text{CMOS Levels} & \end{array}$			7	15	mA	
		I _{OUT} = 0 mA, f = 1 MH CMOS Levels	Hz,		1	2	mA	
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$V_{N} > V_{CC} - 0.3V$, $V_{IN} < 0.3V$	f = 0 (OE, WE, BHE and BLE),			20	μΑ	
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	$\overline{\text{CE}}_1 \ge V_{\text{CC}} - 0.3V \text{ or } 0.3V, \\ V_{\text{IN}} \ge V_{\text{CC}} - 0.3V \text{ or } 0.3V, \\ f = 0, V_{\text{CC}} = 3.60V$		2	20	μА		

- $V_{IL(min.)} = -2.0V$ for pulse durations less than 20 ns. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ.)}$, $T_A = 25^{\circ}C$.


Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	8	pF

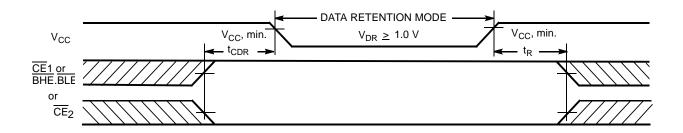
Thermal Resistance

Description	Test Conditions	Symbol	BGA	Units
Thermal Resistance (Junction to Ambient) ^[3]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	°C/W
Thermal Resistance (Junction to Case) ^[3]		Θ_{JC}	16	°C/W

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

_		
Parameters	3.0V	Unit
R1	1103	Ω
R2	1554	Ω
R _{TH}	< √ 645	Ω
V_{TH}	1.75V	V


Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions		Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			1.0	71	3.6	V
I _{CCDR}	Data Retention Current	<u>V_{CC}</u> = 1.0V	L		1	10	μΑ
		$\begin{split} &\frac{V_{CC}}{CE_1} = 1.0V \\ &\frac{V_{CC}}{CE_1} \ge V_{CC} - 0.3V, CE_2 \le 0.2V, \\ &V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V \end{split}$	LL				
t _{CDR} ^[3]	Chip Deselect to Data Retention Time			0			ns
t _R ^[4]	Operation Recovery Time			70			ns

- Tested initially and after any design or process changes that may affect these parameters.
 Full Device AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} > 10 μs or stable at V_{CC(min.)} > 10 μs.

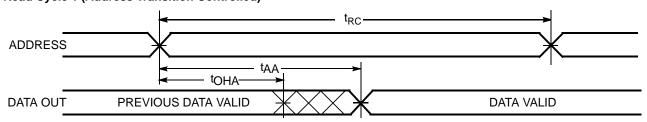
Data Retention Waveform^[5]

Switching Characteristics Over the Operating Range^[6]

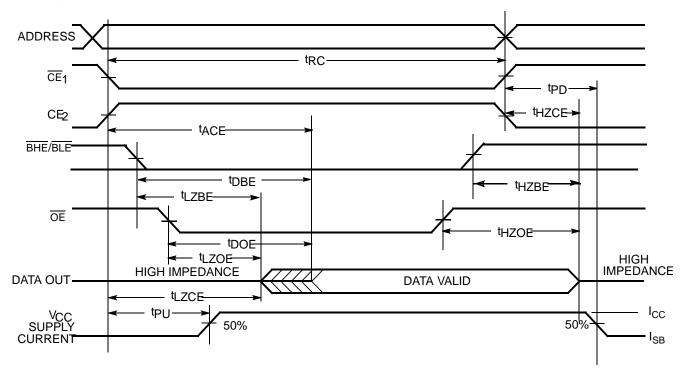
		70) ns		
Parameter	Description	Min.	Max.	Unit	
READ CYCLE		- 1		1	
t _{RC}	Read Cycle Time	70		ns	
t _{AA}	Address to Data Valid		70	ns	
t _{OHA}	Data Hold from Address Change	10		ns	
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to Data Valid		70	ns	
t _{DOE}	OE LOW to Data Valid		35	ns	
t _{LZOE}	OE LOW to Low Z ^[7, 9]	5		ns	
t _{HZOE}	OE HIGH to High Z ^[9]		25	ns	
t _{LZCE}	$\overline{\text{CE}}_1$ LOW and CE_2 HIGH to Low $\text{Z}^{[7]}$ 10				
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to High Z ^[7, 9]		25	ns	
t _{PU}	CE ₁ LOW and CE ₂ HIGH to Power-Up	0		ns	
t _{PD}	CE ₁ HIGH and CE ₂ LOW to Power-Down		70	ns	
t _{DBE}	BHE / BLE LOW to Data Valid		70	ns	
t _{LZBE} [8]	BHE / BLE LOW to Low Z	5		ns	
t _{HZBE}	BHE / BLE HIGH to High Z		25	ns	
WRITE CYCLE ^[10, 11]		•		1	
t _{WC}	Write Cycle Time	70		ns	
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to Write End	60		ns	
t _{AW}	Address Set-Up to Write End	60			
t _{HA}	Address Hold from Write End	0	ns		
t _{SA}	Address Set-Up to Write Start	0	ns		
t _{PWE}	WE Pulse Width	50	ns		

- BHE.BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE.
- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance.

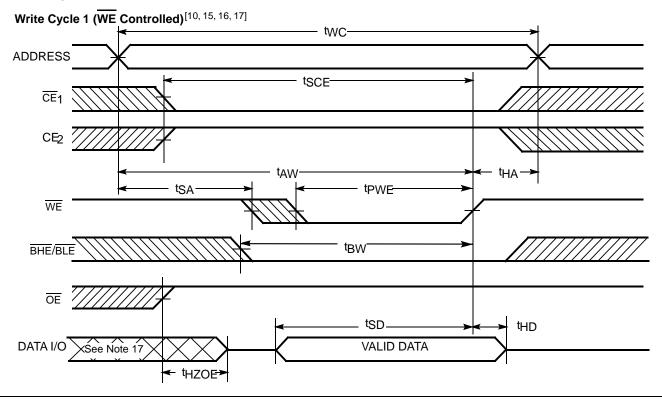
- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 If both byte enables are toggled together this value is 10ns
 t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 The minimum write cycle time for Write Cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

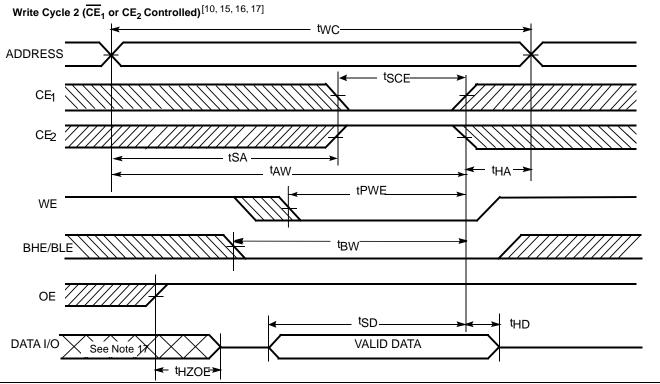

Switching Characteristics Over the Operating Range^[6] (continued)

		70 ns		
Parameter	Description	Min.	Max.	Unit
t _{BW}	BHE / BLE Pulse Width	60		ns
t _{SD}	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[7, 9]		25	ns
t _{LZWE}	WE HIGH to Low Z ^[7]	10		ns


Switching Waveforms

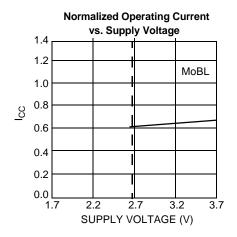
Read Cycle 1 (Address Transition Controlled)^[12, 13]

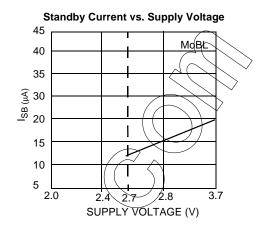

Read Cycle 2 (OE Controlled)[13, 14]

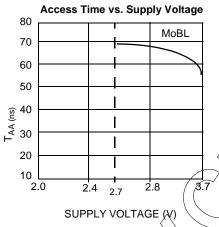


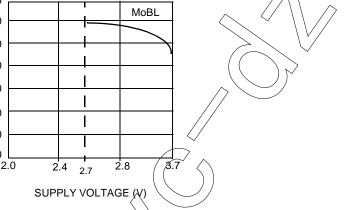
- 12. The device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL}$, and $\overline{CE}_2 = V_{IH}$.
- 13. WE is HIGH for read cycle.
 14. Address valid prior to or coincident with CE₁, BHE, BLE transition LOW and CE₂ transition HIGH.

Switching Waveforms (continued)





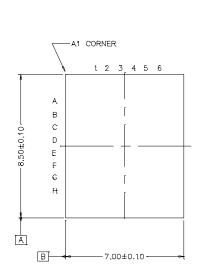

- 15. Data I/O is high impedance if $\overline{OE} = V_{IH}$.
- 16. If $\overline{\text{CE}}_1$ goes HIGH and $\overline{\text{CE}}_2$ goes LOW simultaneously with $\overline{\text{WE}} = V_{\text{IH}}$, the output remains in a high-impedance state.
- 17. During this period, the I/Os are in output state and input signals should not be applied.



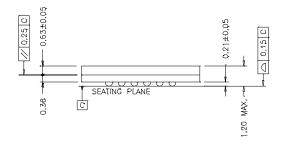
Typical DC and AC Characteristics

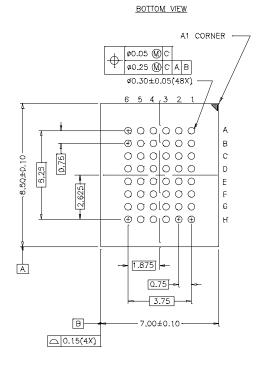
Truth Table

CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	L	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	Х	Х	Х	Н	Н	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (I/O0 – I/O15)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	Data Out (I/O0 – I/O7); High Z (I/O8 – I/O15)	Read	Active (I _{CC})
L	Н	Н	L	L	Н	High Z (I/O0 – I/O7); Data Out (I/O8 – I/O15)	Read	Active (I _{CC})
L	Н	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data In (I/O0 – I/O15)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (I/O0 – I/O7); High Z (I/O8 – I/O15)	Write	Active (I _{CC})



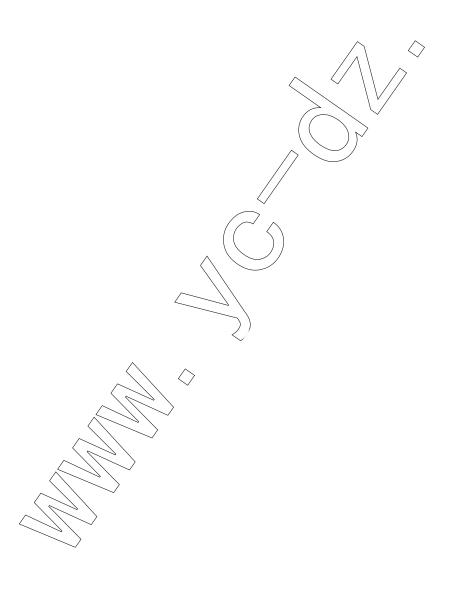
Ordering Information


S	Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
	70	WCMA4016U1X-FF70	BA48	48-Ball Fine Pitch BGA	Industrial
_					


Package Diagrams

48-Ball (7.00 mm x 8.5 mm x 1.2 mm) FBGA BA48B

TOP VIEW



51-85106-*D

Document History Page

	Document Title: WCMA4016U1X 256K x 16 STATIC RAM Document Number:										
REV.	REV. ECN NO. Issue Date Change Description of Change										
**		See ECN	AJU	New Data Sheet							

