GP1F31T/R, GP1F32T/R, GP1F33TT/RR/RT, GP1C331/331A/332/333/334/335 ■ Features

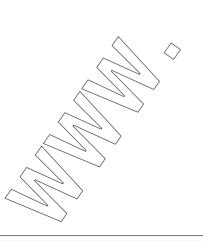
- 1. Low jitter (Δtj : TYP. 1ns)
- 2. High speed signal transmission (8Mbps, NRZ signal)
- Directly connectable to modulation /demoduration IC for digital audio equipment
 Fiber optic transmitter ... Built-in light emitting diode driving circuit

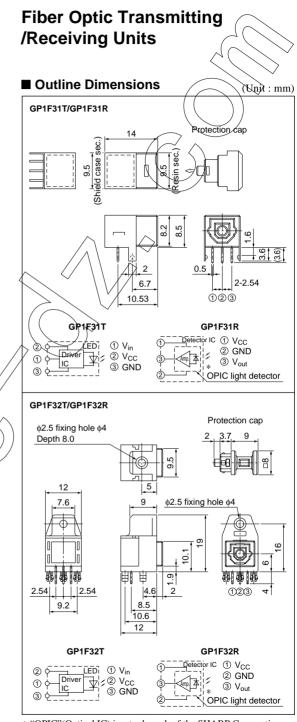
·Fiber optic receiver ... Built-in signal processing circuit

4. With two fixing holes for easy mounting on set panel

(GP1F32T/GP1F32R/GP1F33RR/) 、GP1F33TT/33RT

- 5. 2-channel type
 - (GP1F33RR/GP1F33TT/GP1F33RT)
- * Sharp's optical fiber cables,


(GP1C331, GP1C331A, GP1C332, GP1C333,


 $\textbf{GP1C334, \ GP1C335}) \ are \ recommended$

The model marked with \blacktriangle may not be available in the near future. Contact Sharp sales personnel for details before use

Applications

- 1. CD players
- 2. BS tuners
- 3. Digital amplifiers

* "OPIC"(Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a signal chip.

Notice In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. Internet address for Electronic Components Group http://www.sharp.co.jp/ecg/

Model Line-ups

Model No.	Internal Constitution					
GP1F31T	Fiber optic transmitter					
GP1F31R	Fiber optic receiver					
GP1F32T	Fiber optic transmitter					
GP1F32R	Fiber optic receiver					
GP1F33TT	Fiber optic transmitter (2-channel)					
GP1F33RR	Fiber optic receiver (2-channel)					
GP1F33RT	Fiber optic transmitter/receiver					
GP1C331	Fiber optic cable (1m)					
GP1C331A	Fiber optic cable (0.6m)					
GP1C332	Fiber optic cable (2m)					
GP1C333	Fiber optic cable (3m)					
GP1C334	Fiber optic cable (4m)					
GP1C335	Fiber optic cable (5m)					

■ Absolute Maximum Ratings

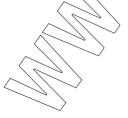
ings (Ta=25°C)

Parameter		Symbol	Rating	Unit
Supply voltage		Vcc	-0.5 to +7	V
Input voltage	*4	Vin	-0.5 to Vcc+0.5	V
Power dissipation *		Р	125	mW
*1 High level output current	*5	Іон	4	mA
*2 Low level output current		Iol	4	mA
On and in a tanana tana	*6	т	-10 to +60	°C
Operating temperature	*7	Topr	-20 to +70	°C
Storage temperature		Tstg	-30 to +80	°C /
*3 Soldering temperature	Tsol	260	°C	

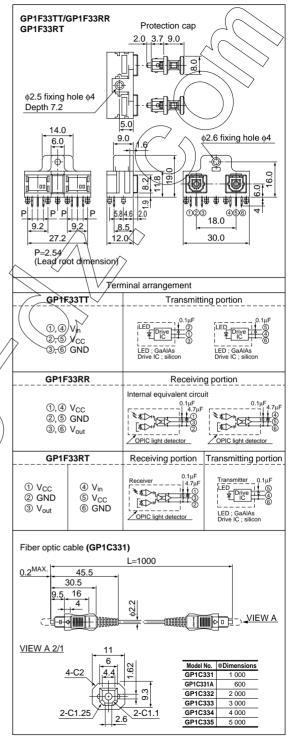
*1 Source current

*2 Sink current

*3 5 seconds/2 times or less


*4 GP1F31T/GP1F32T/GP1F33TT/Transmitting portion of GP1F33RT *5 GP1F31R/GP1F32R/GP1F33RR/Receiving portion of GP1F33RT

*6 GP1F31R/GP1F32R/GP1F3.


*7 GP1F32T/GP1F32R/GP1F33TT, GP1F33RR, GP1F33RT

Fiber Optic Cable (GP1C331, GP1C331A, GP1C332, GP16333, GP1C334, GP1C335) (Ta=25°C)

Parameter		Symbol	Rating	Unit	
Tension	Plug & optical fiber	Tré	<u>40</u>	Ν	
Tension	Optical fiber	$\mathbb{Z}_{\mathcal{F}}$	<4ø	Ν	
Bending radius		R	MIN. 25	mm	
Operating temperature		Top	→30 to +70	°C	
Storage to	emperature	T _{stg}	-30 to +70	°C	
-		\sim			

Outline Dimensions

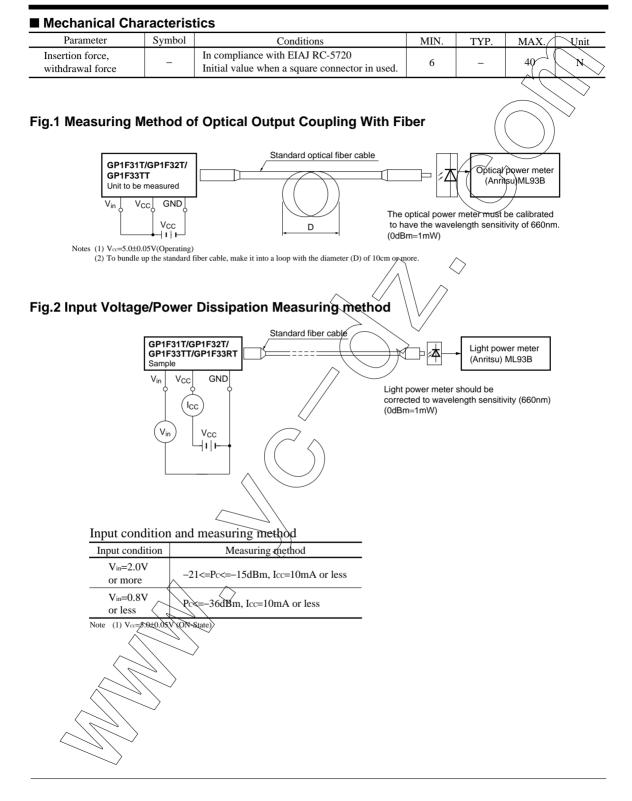
Electro-optical Characteristics(1) Transmitter GP1F31T/GP1F32T/GP1F33TT/Transmitting portion of GP1F33RT

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Operating voltage	Vcc	_	4.75	5.00	5,25	$\nabla v \nabla$	
Peak emission wavelength	λp	_	630	660	690	nm	
Optical power output coupling with fiber	Pc	Refer to Fig.1	-21	-17	-15	dBm	
Dissipation current	Icc	Refer to Fig.2	-	4 (10	∼ _{mA}	
High level input voltage	ViH	Refer to Fig.2	2	- ((_))	V	
Low level input voltage	V_{iL}	Refer to Fig.2	-	- \	0.8	V	
$Low \rightarrow High propagation delay time$	t _{pLH}	Refer to Fig.3	-		100	ns	
High \rightarrow Low propagation delay time	t _{pHL}	Refer to Fig.3	- ((- <	100	ns	
Pulse width distortion	Δtw	Refer to Fig.3	-25(-30)**	$\left(- \right)$	+25(+30)**	ns	
Jitter	Δtj	Refer to Fig.4	-		25(30)**	ns	
Operating transfer rate	Т	_	-	-	8	Mbps	

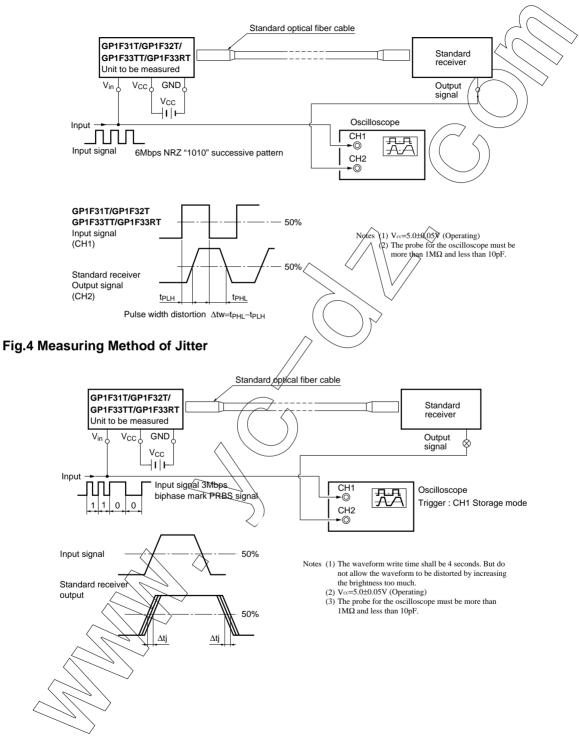
** Value in parenthesis : GP1F31T

■ Electro-optical Characteristics(2) Receiver GP1F31R/GP1F32R/GP1F33RR/Receiving portion of GP1F33RT

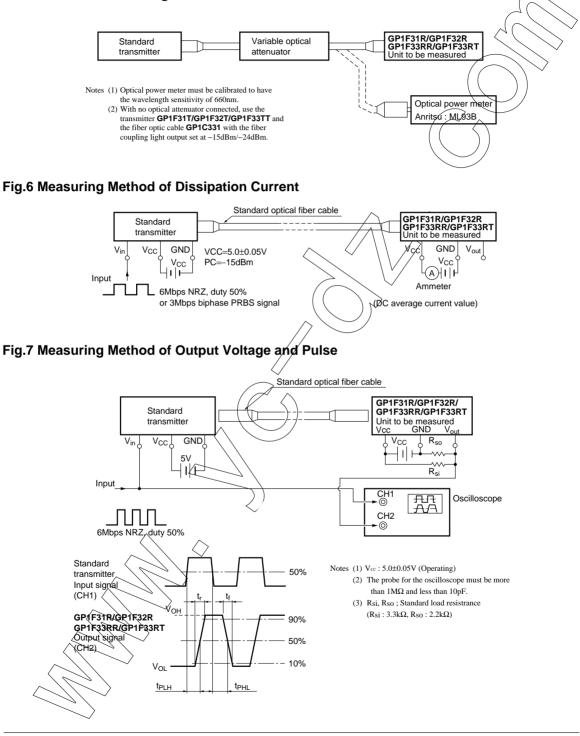
(Ta=25°C)

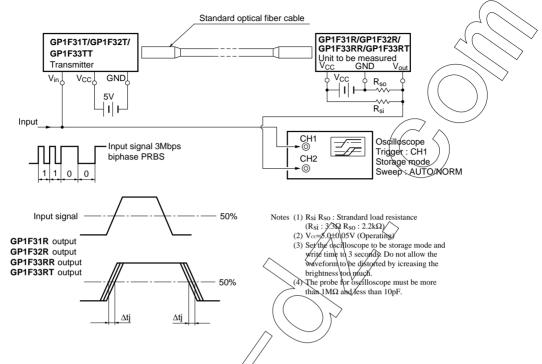

 $(T_{a}=25^{\circ}C)$

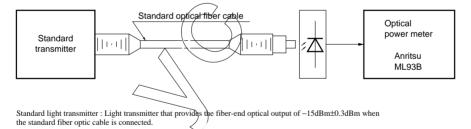
Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Vcc	- //	¥.75	5.00	5.25	V	
λp	-	× -	700	-	nm	
PCMAX	Refer to Fig.5	-14.5	-	-	dBm	
PCMIN	Refer to Fig.5	-	-	-24	dBm	
Icc	Refer to Fig.6	-	15	40	mA	
Vон	Refer to Fig.7	2.7	3.5	-	V	
Vol	Refer to Fig.7	-	0.2	0.4	V	
tr	Refer to Fig.7	-	12	30	ns	
tſ	Refer to Fig.7	-	4	30	ns	
t _{pLH}	Refer to Fig.7	-	-	100	ns	
t _{pHL}	Refer to Fig.7	-	-	100	ns	
Δtw	Refer to Fig.7	-30	-	+30	ns	
A +;	Refer to Fig.8, Pc=-15dBm	-	1	30	ns	
	Refer to Fig.8, Pc=-24dBm	-	-	30	ns	
Т	NRX. duty 50% input	0.1	-	8	Mbps	
	Symbol Vcc λp Pcmax Pcmin Icc Voh Vol. tr tr tf tpLH tpHL Δtw	Symbol Conditions Vcc - λp - PCMAX Refer to Fig.5 PCMIN Refer to Fig.5 Icc Refer to Fig.6 Voh Refer to Fig.7 VoL Refer to Fig.7 tr Refer to Fig.7 tpHL Refer to Fig.7 tpHL Refer to Fig.7 Δtw Refer to Fig.8, Pc=-15dBm Atj Refer to Fig.8, Pc=-24dBm	Symbol Conditions MIN. Vcc - 4.75 λp - - PCMAX Refer to Fig.5 -14.5 PCMAX Refer to Fig.5 - Icc Refer to Fig.5 - Icc Refer to Fig.7 - Vol Refer to Fig.7 - tr Refer to Fig.7 - tr Refer to Fig.7 - tpLH Refer to Fig.7 - tpLH Refer to Fig.7 - dtw Refer to Fig.7 - Atty Refer to Fig.8, Pc=-15dBm - Refer to Fig.8, Pc=-24dBm - -	Symbol Conditions MIN. TYP. Vcc - 4.75 5.00 λp - - 700 PcMAX Refer to Fig.5 -14.5 - PCMAX Refer to Fig.5 - - Icc Refer to Fig.6 - 15 VoH Refer to Fig.7 2.7 3.5 VoL Refer to Fig.7 - 0.2 tr Refer to Fig.7 - 12 tr Refer to Fig.7 - 4 tpLH Refer to Fig.7 - - Atw Refer to Fig.7 - 1 Refer to Fig.8, Pc=-15dBm - 1 Refer to Fig.8, Pc=-24dBm - -	Symbol Conditions MIN. TYP. MAX. Vcc - 4.75 5.00 5.25 λp - - 700 - PCMAX Refer to Fig.5 -14.5 - - PCMAX Refer to Fig.5 -14.5 - - PCMAX Refer to Fig.5 - - - Icc Refer to Fig.7 2.7 3.5 - Vol Refer to Fig.7 - 0.2 0.4 tr Refer to Fig.7 - 12 30 tr Refer to Fig.7 - 100 10 tpLH Refer to Fig.7 - 100 100 tpHL Refer to Fig.7 - 100 30 Δtj Refer to Fig.8, Pc=-15dBm - 1 30	


27

■ Electro-optical Characteristics(3) Fiber Optic Cable


Parameter	Symbol	MĮŃ.>	TYP.	MAX.	Unit
Optical output coupling fiber	/PC/	-17	-	-	dBm
Refracting ratio distribution	\mathcal{A}	$\overline{\}$	Step index		-


Fig.3 Pulse Response Measuring Method


Fig.5 Muximum Input Optical Power Level/Minimum Input Optical Power Level Measuring Method of Receiving Unit

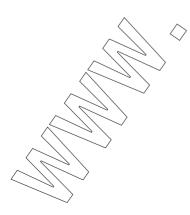


Fig.8 Measuring Method of Jitter

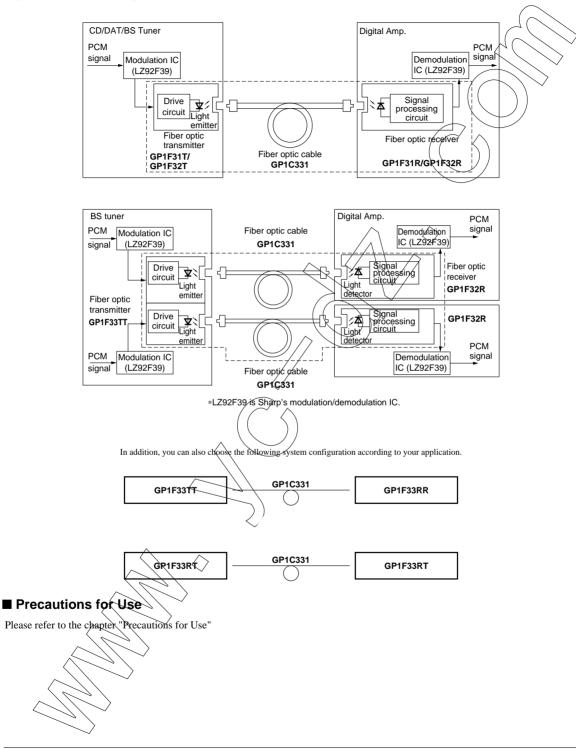


Fig.9 Measuring Method of Optical Output Coupling With Fiber

Fig.10 System Configuration Example

NOTICE

- •The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- •Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- •Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
- Personal computers
- Office automation equipment
- Telecommunication equipment [terminal]
- Test and measurement equipment
- Industrial control
- Audio visual equipment
- Consumer electronics

(ii)Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:

- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- Traffic signals
- Gas leakage sensor breakers
- Alarm equipment
- Various safety devices, etc.

(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:

- Space applications
- Telecommunication equipment [trunk lines]
- Nuclear power control equipment
- Medical and other life support equipment (e.g., scuba).
- •Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.
- •If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices
- •This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright taws, to part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- •Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

