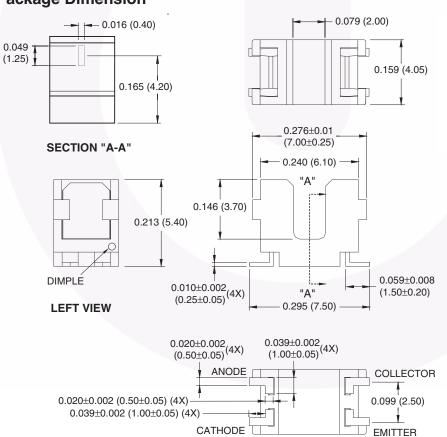
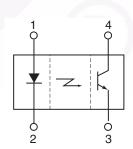


August 2009

QVE00033

Phototransistor Optical Surface Mount Interrupter Switch


Features


- No contact switching
- Transistor Output
- Compact surface mount package
- Opaque black plastic housing
- 2mm wide slot
- 0.4 mm aperture width
- Tape and reel
- Reflow conditions: Preheat = 160°C for 120 seconds Reflow = 200°C for 60 seconds (peak = 240°C)
- HL-94V-0 housing

Description

The QVE00033 is a miniature slotted optical switch designed for surface mount applications. It consists of a GaAs LED and a silicon phototransistor facing each other across a 2mm gap, and packaged in a temperature resistant black plastic housing.

Package Dimension

BOTTOM VIEW

1. Dimensions for all drawings are in inches (millimeters). Tolerance ±0.005" (0.127mm) unless othewise specified.

Absolute Maximum Ratings (T_A = 25°C unless otherwise specified)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating	Units	
T _{OPR}	Operating Temperature	-55 to +100	°C	
T _{STG}	Storage Temperature	-55 to +100	°C	
T _{SOL-I}	Soldering Temperature (Iron) ^(2,3,4)	240 for 5 sec. °C		
T _{SOL-F}	Soldering Temperature (Flow) ^(2,3)	260 for 10 sec. °C		
P _{TOT}	Total Power Dissipation	100 mW		
EMITTER				
I _F	Continuous Forward Current	50	mA	
V _R	Reverse Voltage	6	V	
P _D	Power Dissipation ⁽¹⁾ 75 mW		mW	
SENSOR				
V _{CEO}	Collector-Emitter Voltage	30	V	
V _{ECO}	Emitter-Collector Voltage	4.5	V	
I _C	Collector Current	20	mA	
P_{D}	Power Dissipation ⁽¹⁾	75	mW	

Notes:

- 1. Derate power dissipation linearly 1.00mW/°C above 25°C.
- 2. RMA flux is recommended.
- 3. Methanol or isopropyl alcohols are recommended as cleaning agents.
- 4. Soldering iron tip 1/16" (1.6mm) from housing.

Electrical/Optical Characteristics (T_A = 25°C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
EMITTER		<u>'</u>	1		ı	
V _F	Forward Voltage	I _F = 20mA		1.2	1.4	V
I _R	Reverse Current	V _R = 4V			10	μΑ
I _{PE}	Peak Emission Wavelength	I _F = 20mA		940		nm
SENSOR			!	!		
I _{CEO}	Dark Current	$V_{CE} = 20V, I_F = 0mA$			100	nA
COUPLED						
I _{C(ON)}	Collector Current	$I_F = 5mA, V_{CE} = 5V$	100		600	μA
V _{CE (SAT)}	Collector Emitter	$I_F = 10 \text{mA}, I_C = 40 \mu \text{A}$			0.4	V
t _r	Rise Time	$V_{CC} = 5V, R_L = 1000\Omega,$		7	150	μs
t _f	Fall Time	I _C = 100μA		7	150	μs

Typical Performance Characteristics

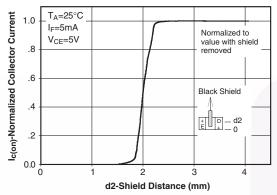


Figure 1. Normalized Collector Current Vs. Shield Distance

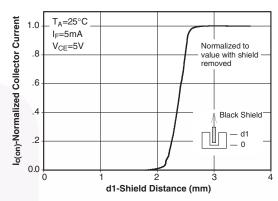


Figure 2. Normalized Collector Current Vs. Shield Distance

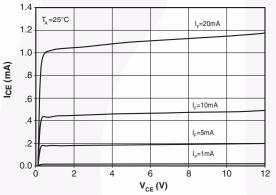


Figure 3. Collector Current Vs. Collector-Emitter Voltage

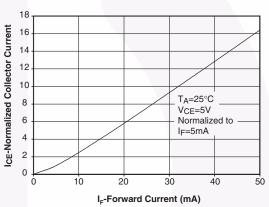


Figure 4. Normalized Collector Current Vs. Forward Current

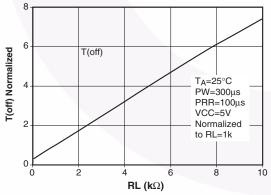


Figure 5. Rise Time vs. Load Resistance

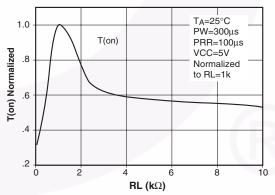
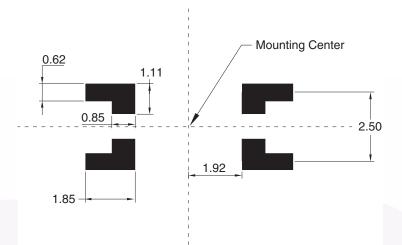



Figure 6. Fall Time vs. Load Resistance

Recommended Printed Circuit Board Pattern (For Reference Only)

Tape and Reel Dimensions -0.65 [16.5] R0.24 [R6.0] 0.24 [6.00] R6.5 [R165.0] R6.3 [R160.0] R0.31 [R8.0] Œ 3.94 [100.0] Ø3.54 [Ø90.0] R1.97 [R50.0] ∠R5.16 [R131.0] R2.17 [R55.0] 0.83 [21.10] - 0.09 [2.3] R0.27±0.047 [R6.75±1.20] 0.43 [10.75] -VIEW B 0.256 [6.50] Max 0.059 [1.50] 0.157 [4.00] Ø0.059 MIN 0.069 [1.75] 0.232 [5.90] 0.30 [7.60] - 0.014 [0.35] 0 [0] min 0.295 [7.50] 0.476 [12.10] Max 0.630 [16.00] 0.185 [4.70] -0.079 [2.00] 0.472 [12.00] 0.378 [9.60] Max ANODE (PIN1) FACING SPROCKET HOLE DIMPLE 0.213 COVER TAPE EMBOSSMENT **USER DIRECTION** Quantitiy of units per reel is 800. QVE00033 ASSEMBLY VIEW A SCALE: 2:1 UNIT IN CAVITY

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™

Current Transfer Logic™ EcoSPARK[®] EfficentMax™ EZSWITCH™'

Fairchild® Fairchild Semiconductor® FACT Quiet Series™

FACT® FAST® FastvCore™ FETBench™

FlashWriter®*

F-PFS™ FRFET®

Global Power Resource SM

Green FPS™ Green FPS™ e-Series™

Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™

MICROCOUPLER™ MicroFFT™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

PDP SPM™

Power-SPM™

PowerTrench® PowerXS™

Programmable Active Droop™ **QFET**

QSTM

Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SmartMax™ SMART START™

SPM[®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ Sync-Lock™ SYSTEM ® GENERAL The Power Franchise®

bwer franchi TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™* ւSerDes™

UHC Ultra FRFET™ UniFET™ VCX™

VisualMax™ XS™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 140

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.