General Description

The MAX3793 transimpedance amplifier provides a compact low-power solution for applications from 1Gbps up to 4.25Gbps.

The MAX3793 features 195nA input-referred noise, $3.5k\Omega$ transimpedance gain, 2.9GHz bandwidth (C_{IN} = 0.3pF) and 2.8mAp-p input overload. Operating from a +3.3V supply, the MAX3793 consumes only 106mW. An integrated filter resistor provides positive bias for the photodiode. These features, combined with a small die size, allow easy assembly into a TO-46 header with a photodiode. The MAX3793 also includes an average photocurrent monitor.

The MAX3793 has a typical optical sensitivity of -20dBm (0.55A/W) at 4.25Gbps. Typical optical overload is at 4dBm. The MAX3793 and the MAX3794 limiting amplifiers provide a complete solution for multirate receiver applications.

Applications SFF/SFP Transceiver Modules from 1Gbps to 4.25Gbps

Gigabit Ethernet Optical Receivers

Multirate Fibre-Channel Optical Receivers

_Features

- ♦ 4.7psp-p Deterministic Jitter (DJ)
- 195nA_{RMS} Input-Referred Noise
- 2.9GHz Small-Signal Bandwidth
- ♦ 2.8mAp-p AC Overload
- Photocurrent Output Monitor
- ♦ 3.5kΩ Differential Gain
- Compact Die Size (30 mils x 50 mils)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3793E/D	-40°C to +85°C	Dice*

*Dice are designed to operate from -40°C to +85°C ambient temperature, but are tested and guaranteed only at $T_A = +25$ °C.

Typical Application Circuit

HOST SFP OPTICAL RECEIVER BOARD CVCC RATE SELECT BWSEL CFILT V_{CC} 0.1µF 0.1µF ┥┝ FILT 011 IN+ OUT+ **WIXI/W** /VI/IXI/VI MAX3793 MAX3794* 0.1µF 0.1µF Vcc OUT OUT-┥┝ IN-MON $4.7 \text{k}\Omega$ GND DISABLE 105 TO Ē $10k\Omega$ RMON MOD-DEF1 DS1856/ MOD-DEF2 DS1859 *FUTURE PRODUCT

MAXIM

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage (V _{CC})	0.5V to +4.5V
Continuous CML Output Current	
(OUT+, OUT-)	25mA to +25mA
Continuous Input Current (IN)	4mA to +4mA

Continuous Input Current (FILTER).....-8mA to +8mA Operating Junction Temperature Range (T_J)...-55°C to +150°C Storage Ambient Temperature Range (T_{STG})...-55°C to +150°C Die Attach Temperature.....+400°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.97V \text{ to } +3.63V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C.$ Typical values are at $V_{CC} = +3.3V$, source capacitance $C_{IN} = 0.60pF$, $T_A = +25^{\circ}C$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
Power-Supply Current	ICC	Measured with AC-coupled output			32	46	mA
Input Bias Voltage						1.0	V
Input Overload	IOL	(Note 3)		2.2	2.8		mA _{P-P}
Optical Input Sensitivity		BER = 10 ⁻¹² , K28.5, at 1.0625	ōGbps		-23.5		
(850nm, r _e = 10dB,		BER = 10 ⁻¹² , K28.5, at 2.125Gbps			-23		dBm
Responsiveness = 0.55A/W)		BER = 10 ⁻¹² , K28.5, at 4.25G	bps		-20		
		BW = 933MHz, 4th-order Bessel filter			195	264	
Input-Referred Noise (Notes 3, 4)		BW = 2000MHz, 4th-order Be	essel filter		377	420	nA _{RMS}
		Unfiltered output			449	615	
Differential Transimpedance		$I_{IN} = 20\mu A_{AVE}$		2.8	3.5	4.5	kΩ
Small-Signal Bandwidth	BW	-3dB, C _{IN} = 0.6pF (Note 3)		1.9	2.5	3.2	GHz
	DVV	-3dB, C _{IN} = 0.3pF (Note 5)		2.36	2.9	3.56	GHZ
Gain Peaking		(Note 3)			0		dB
Low-Frequency Cutoff		-3dB, I _{IN} = 20µA _{AVE} (Note 3)				70	kHz
	DJ	I _{IN} = 20µA _{P-P} , K28.5, at 4.250	K28.5, at 4.25Gbps		4.7	11	
		20µА _{Р-Р} < I _{IN} < 100µА _{Р-Р} , К2 4.25Gbps	28.5, at		6	16	
Deterministic Jitter (Notes 3, 6)		100µАр ₋ р < I _{IN} < 2.2mАр ₋ р, K28.5, at 4.25Gbps Т _А			10	27	psp-p
(100185-5, 6)			$T_{A} = +100^{\circ}C$		10]
		T _A = +100°C, 100µA _{P-P} < I _{IN} K28.5, at 4.25Gbps			10		
Photodiode Resistor	R _{FILT}			600	750	930	Ω
Differential Output Resistance	Rout			85	100	115	Ω
Maximum Differential Output Voltage	VOD(MAX)	Outputs terminated by 50 Ω to V_CC, I_{IN} > 100 \mu A_{P-P}		220		480	mV _{P-P}
Output Edge Transition Time		Outputs terminated by 50Ω to V _{CC} 20% to 80%, I _{IN} >			73	95	00
		200µA _{P-P} (Note 3)	$T_A = +100^{\circ}C$		90		ps

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.97V \text{ to } +3.63V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C.$ Typical values are at $V_{CC} = +3.3V$, source capacitance $C_{IN} = 0.60pF$, $T_A = +25^{\circ}C$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
Differential Output Datum Lago		Frequency ≤ 1GHz		18		dB	
Differential Output Return Loss		1GHz < frequency ≤ 4GHz		9			
Single Ended Output Daturn Less		Frequency ≤ 1GHz		14		dB	
Single-Ended Output Return Loss		1GHz < frequency ≤ 4GHz		11		uБ	
Power-Supply Noise Rejection	DONID	$I_{IN} = 0, f < 1MHz$		47		dB	
(Note 7)	PSNR	$I_{IN} = 0$, $1MHz \le f < 10MHz$		22			
Minimum Photocurrent to be Detected	IAVGMIN				2	μA	
Maximum Photocurrent to be Detected	IAVGMAX		1			mA	
Maximum Photocurrent Monitor Output Offset	I _{MON} (OFFSET)	I _{IN} = 0µA _{P-P}			10	μA	
Photocurrent Monitor Output Offset Temperature Dependency	∆I _{MON} (OFFSET)	$I_{IN} = 0\mu A_{P-P}$ $\Delta I_{MON(OFFSET)} = ABS (I_{MON(OFFSET)})$ $(-40^{\circ}C) - I_{MON(OFFSET)} (+100^{\circ}C))$		0.21		μA	
Monitor Output Compliance Voltage	VMON		0		2	V	
Photocurrent Monitor Gain	AMON	$2\mu A \le I_{AVG} \le 1.0 \text{mA}$		1		A/A	
Photocurrent Monitor Gain Stability		$2\mu A \le I_{AVG} \le 1.0 \text{mA}$ (Notes 3, 8)	-10		+10	%	
Photocurrent Monitor Gain Bandwidth		$2\mu A \le I_{AVG} \le 1.0 mA$		7		MHz	

Note 1: Die parameters are production tested at room temperature only, but are guaranteed by design and characterization from -40°C to +85°C.

Note 2: Source capacitance represents the total external capacitance at the IN pad during characterization of the noise and bandwidth parameters.

Note 3: Guaranteed by design and characterization.

Note 4: Input-referred noise is:

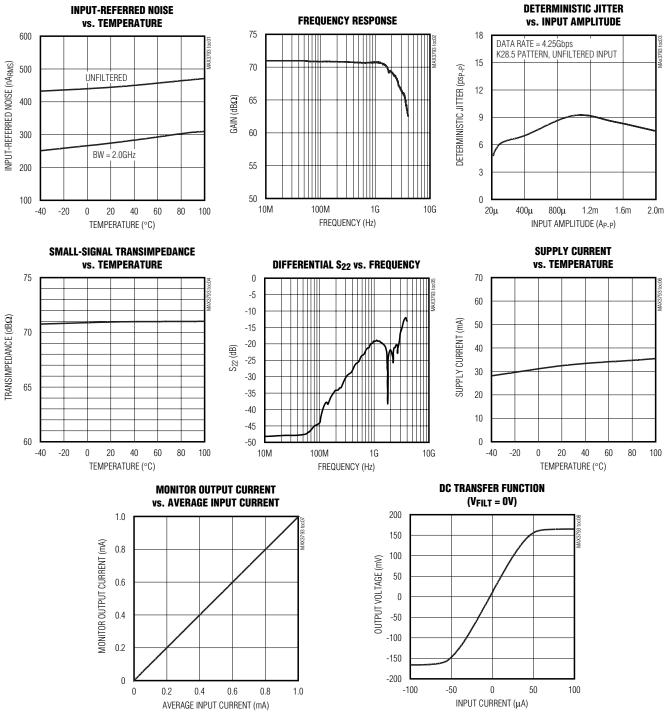
$$\left(\frac{\text{RMS Output Noise}}{\text{Gain at f} = 100\text{MHz}}\right)$$

Note 5: Values are derived by calculation from the $C_{IN} = 0.6pF$ measurements.

Note 6: DJ is the sum of pulse-width distortion (PWD) and pattern-dependent jitter (PDJ). DJ is measured using a 3.2GHz 4th-order Bessel filter on the input.

Note 7: Power-supply noise rejection PSNR = -20log($\Delta V_{OUT} / \Delta V_{CC}$), where ΔV_{OUT} is the change in differential output voltage and ΔV_{CC} is the noise on V_{CC}.

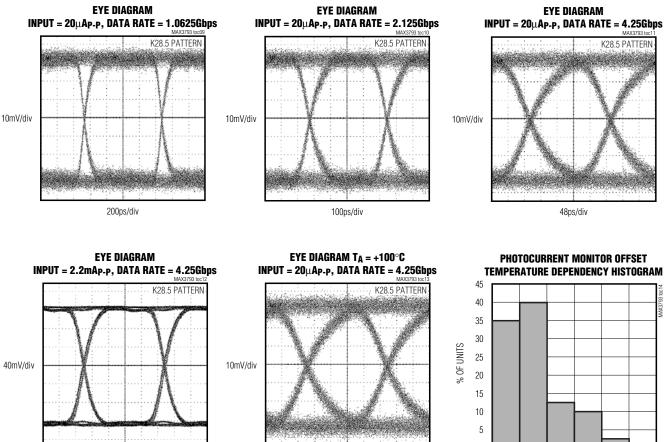
Note 8: Gain stability is defined as


(AMON - AMON-NOM) / (AMON-NOM)

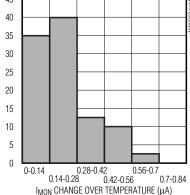
over the listed current range, temperature, and supply variation. Nominal gain is measured at V_{CC} = +3.3V and +25°C.

Typical Operating Characteristics

 $(V_{CC} = +3.3V, C_{IN} = 0.6pF, T_A = +25^{\circ}C, unless otherwise noted.)$


MAX3793

Typical Operating Characteristics (continued)


(V_{CC} = +3.3V, C_{IN} = 0.6pF, T_A = $+25^{\circ}C$, unless otherwise noted.)

48ps/div

48ps/div

MAX3793

Pin Description

BOND PAD	NAME	FUNCTION
1	OUT+	Noninverting Data Output. Current flowing into IN causes the voltage at OUT+ to increase.
2, 3	V _{CC} +3.3V Supply Voltage. The pads are not internally connected. Therefore, they must always be external bonded.	
4 FILT Provides bias voltage for the photodiode through a 750Ω resistor to V _{CC} . When grounded, this pin c the DC-cancellation amplifier to allow a DC path from IN to OUT+ and OUT- for testing.		Provides bias voltage for the photodiode through a 750 Ω resistor to V _{CC} . When grounded, this pin disables the DC-cancellation amplifier to allow a DC path from IN to OUT+ and OUT- for testing.
5	IN	TIA Input. Signal current from photodiode flows into this pin.
6 MON Photocurrent Monitor. Output current from MON is proportional to the average current in R _{FILT} . Corresistor between MON and ground to monitor the average photocurrent.		Photocurrent Monitor. Output current from MON is proportional to the average current in R _{FILT} . Connect a resistor between MON and ground to monitor the average photocurrent.
7, 11	11 GND Circuit Ground. The pads are not internally connected. Therefore, they must always be externally bonde	
8, 10	N.C.	No Connection
9	OUT-	Inverting Data Output. Current flowing into IN causes the voltage at OUT- to decrease.

See the Wire Bonding section for recommended bonding sequence, Figure 4.

Vcc < Rout OUTPUT ROUT Rf VOLTAGE AMPLIFIER BUFFER - OUT+ IN・ TIA - OUT-LOWPASS MAX3793 FILTER DC CANCELLATION ΕN Vcc FILT -FILTER NETWORK MON

Functional Diagram

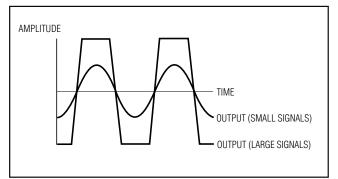


Figure 1. MAX3793 Limited Output

Detailed Description

The MAX3793 transimpedance amplifier is designed for 1Gbps to 4.25Gbps fiber optic applications. The MAX3793 is comprised of a transimpedance amplifier, a voltage amplifier, an output buffer, a DC-cancellation circuit, a photodiode biasing resistor, and a photocurrent monitor (see the *Functional Diagram*).

Transimpedance Amplifier

The signal current at the input flows into the summing node of a high-gain amplifier. Shunt feedback through resistor R_F converts this current into a voltage. Schottky diodes clamp the output signal for large input currents (Figure 1).

Voltage Amplifier

The voltage amplifier provides additional gain and converts the transimpedance amplifier single-ended output signal into a differential signal.

Output Buffer

The output buffer is designed to drive a 100Ω differential load between OUT+ and OUT-. For optimum supply noise rejection, the MAX3793 should be terminated with a matched load. The MAX3793 outputs do not drive a DC-coupled grounded load. The outputs should always be AC-coupled. Refer to Application Note HFAN-1.1: *Choosing AC-Coupling Capacitors* for a more detailed discussion on selecting capacitors. If a single-ended output is required, both the used and the unused outputs should be terminated in a similar manner. See Figure 6.

DC-Cancellation Circuit

The DC-cancellation circuit uses low-frequency feedback to remove the DC component of the input signal (Figure 2). This feature centers the input signal within the transimpedance amplifier's linear range, thereby reducing pulse-width distortion.

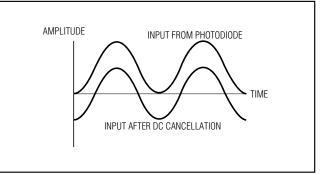


Figure 2. DC-Cancellation Effect on Input

The DC-cancellation circuit is internally compensated and does not require external capacitors. This circuit minimizes pulse-width distortion for data sequences that exhibit a 50% mark density. A mark density significantly different from 50% causes the MAX3793 to generate pulse-width distortion. Grounding the FILT pin disables the DC-cancellation circuit. For normal operation, the DC-cancellation circuit must be enabled.

Photocurrent Monitor

The MAX3793 includes an average photocurrent monitor. The current sourced from MON to ground is proportionally equal to the average RFILT current (see the *Typical Operating Characteristics*). This RFILT is used to bias the photodiode, see Figure 7.

R_{FILT} is an internal 750 Ω resistor between V_{CC} and FILT. This resistor is to be used in conjunction with an external C_{FILT} to bias the photodiode. The current through this resistor is monitored and creates the photocurrent monitor output. For test purposes, driving FILT below 0.5V disables the DC-cancellation circuit.

Design Procedure

Select Photodiode

Noise performance and bandwidth are adversely affected by capacitance on the TIA input node. Select a low-capacitance photodiode to minimize the total input capacitance on this pin. The MAX3793 is optimized for 0.6pF of capacitance on the input.

Select CFILT

The filter resistor of the MAX3793, combined with an external capacitor, can be used to reduce noise (see the *Typical Application Circuit*). Current generated by supply noise voltage is divided between CFILT and CIN. Assuming the filter capacitor is much larger than the photodiode capacitance, the input noise current due to supply noise is:

INOISE = (VNOISE × CIN) / (RFILT × CFILT)

If the amount of tolerable noise is known, the filter capacitor can be easily selected:

 $C_{FILT} = (V_{NOISE} \times C_{IN}) / (R_{FILT} \times I_{NOISE})$

For example, with maximum noise voltage = 100mVp-p, C_{IN} = 0.6pF, R_{FILT} = 750 Ω , and I_{NOISE} at 350nA, the filter capacitor is:

 $C_{FILT} = (100 \text{mV} \times 0.6 \text{pF}) / (750 \Omega \times 350 \text{nA}) = 229 \text{pF}$

Select RMON

If photocurrent monitoring is desired, connect a resistor between MON and ground to monitor the average photocurrent. Select the largest R_{MON} possible:

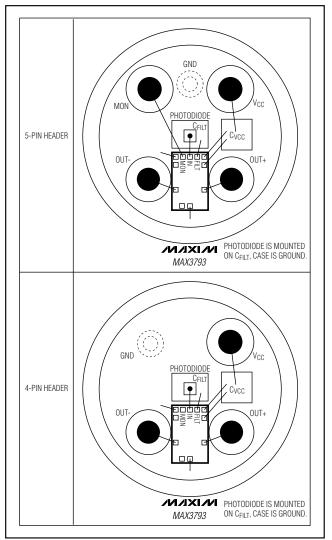


Figure 3. Suggested TO Header Layouts

$$R_{MON} = \frac{2.0V}{I_{MONMAX}}$$

where, I_{MONMAX} is the largest average input current observed. An ammeter can also be used to monitor the current out of the MON pin.

Layout Considerations

Figure 3 shows suggested layouts for 4-pin and 5-pin TO headers.

Wire Bonding

For high-current density and reliable operation, the MAX3793 uses gold metalization. For best results, use gold-wire ball-bonding techniques. Exercise caution if attempting wedge bonding. The die size is 30 mils x 50 mils (0.762mm x 1.27mm), and the die thickness is 15 mils (380µm). Bond-pad size for the V_{CC}, GND, OUT+, and OUT- pads is 94µm x 94µm. Bond-pad size for the FILT, IN, and MON pads is 79µm x 79µm; all bond-pad metal thickness is 1.2µm. Refer to Maxim Application Note HFAN-08.0.1: *Understanding Bonding Coordinates and Physical Die Size* for additional information on bond-pad coordinates. Recommended bonding sequence is shown in Figure 4.

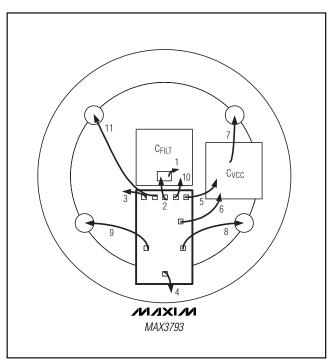


Figure 4. Recommended MAX3793 Bonding Scheme

Applications Information

Optical Power Relations

Many of the MAX3793 specifications relate to the input signal amplitude. When working with optical receivers, the input is sometimes expressed in terms of average optical power and extinction ratio. Figure 5 and Table 1 show relations that are helpful for converting optical power to input signal when designing with the MAX3793.

Optical Sensitivity Calculation

The input-referred RMS noise current (I_N) of the MAX3793 generally determines the receiver sensitivity.

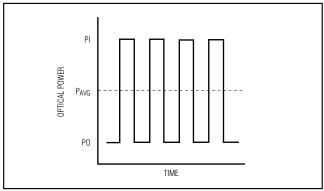


Figure 5. Optical Power Relations

Table 1. Optical Power Relations*

To obtain a system bit-error rate (BER) of 1E-12, the signal-to-noise ratio must always exceed 14:1. The input sensitivity, expressed in average power, can be estimated as:

$$Sensitivity = 10 log \left(\frac{14.1 \times I_N (r_e + 1)}{2 \times \rho \times (r_e - 1)} \times 1000 \right) dBm$$

where, ρ is the photodiode responsivity in A/W, and IN is the RMS noise current in amps.

Input Optical Overload

Overload is the largest input that the MAX3793 accepts while meeting DJ specifications. Optical overload can be estimated in terms of average power with the following equation:

Overload =
$$10\log\left(\frac{I_{OL}}{2 \times \rho} \times 1000\right) dBm$$

Optical Linear Range

The MAX3793 has high gain, which limits the output when the input signal exceeds 50μ AP-P. The MAX3793 operates in a linear range for inputs not exceeding:

Linear Range =
$$10\log\left(\frac{50\mu A \times (r_e + 1)}{2 \times \rho \times (r_e - 1)} \times 1000\right) dBm$$

PARAMETER SYMBOL		RELATION
Average power	Pavg	P _{AVG} = (P0 + P1) / 2
Extinction ratio	r _e	r _e = P1 / P0
Optical power of a 1	P1	$P1 = 2P_{AVG} \frac{r_e}{r_e + 1}$
Optical power of a 0	PO	$P0 = 2P_{AVG} / (r_e + 1)$
Optical modulation amplitude	P _{IN}	$P_{N} = P1 - P0 = 2P_{AVG} \frac{r_{e} - r_{e}}{r_{e} + r_{e}}$

*Assuming a 50% average mark density.

MAX3793

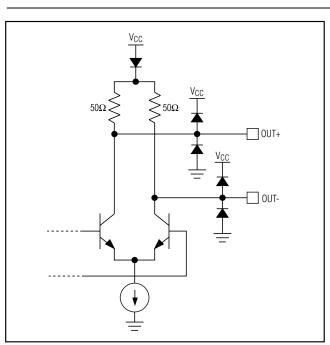


Figure 6. Equivalent Output

Table 2. Bond-Pad Coordinates

PAD	NAME	COORDIN	ATES (µm)
PAD	NAME	Х	Y
BP1	OUT+	40.2	650.6
BP2	V _{CC}	40.2	391.6
BP3	V _{CC}	47.2	47.2
BP4	FILT	166.2	40.2
BP5	IN	278.2	40.2
BP6	MON	390.2	40.2
BP7	GND	509.2	47.2
BP8	N.C.	516.2	289.2
BP9	OUT-	509.2	650.6
BP10	N.C.	393.0	1032.8
BP11	GND	274.0	1025.8

Interface Schematics

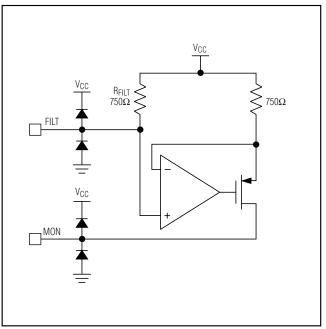
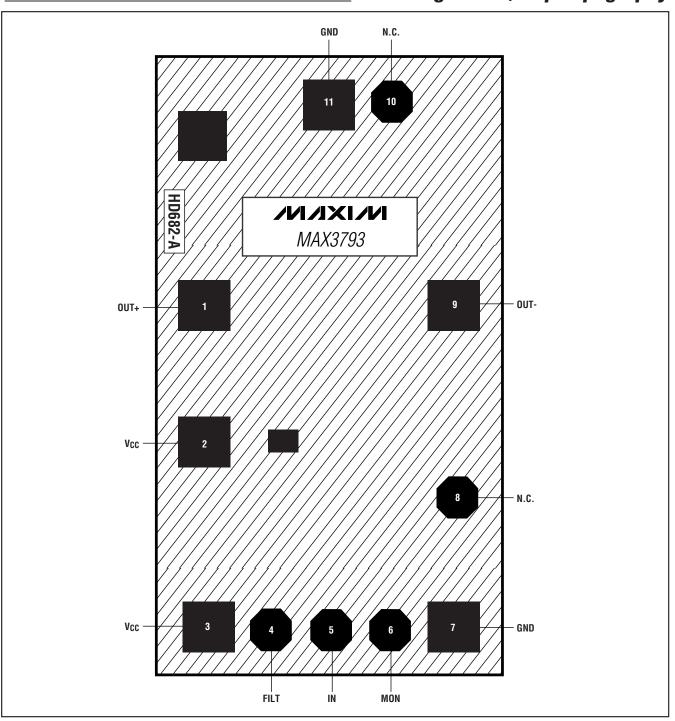


Figure 7. FILT and MON Interface

Pad Coordinates


Table 2 gives center pad coordinates for the MAX3793 bondpads. See Application Note HFAN-8.0.1: *Understanding Bonding Coordinates and Physical Die Size* for more information on bondpad coordinates.

Chip Information

TRANSISTOR COUNT: 475 PROCESS: SiGe Bipolar

Package Information

For the latest package outline information, go to **www.maxim-ic.com/packages**.

__Pin Configuration/Chip Topography

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ___

© 2005 Maxim Integrated Products Printed USA MAXIM is a registered trademark of Maxim Integrated Products, Inc.

_ 11