
EE-SX338

外形寸法

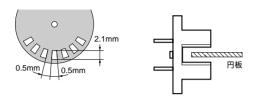
(単位:mm)

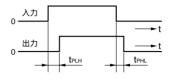
特徵

受光素子と増幅回路を1チップに内蔵 受光素子に温度補償回路を内蔵 電源電圧DC4.5~16Vまで適用可能 C-MOS、TTLに直結可能 高分解能 (スリット幅0.5mm) 横スリットタイプ しゃ光時ONタイプ

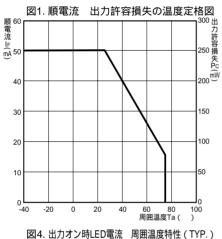
絶対最大定格(Ta = 25)

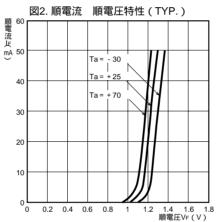
	Ιļ	Ę	目		記号	定格値	単位
発光側	順	1	Ē	流	l F	50 *1	mA
	逆	1	Ē	圧	Vr	4	V
受光側	電	源 電		圧	Vcc	16	V
	出	力	電	圧	Vouт	28	V
	出	力 電		流	I оит	16	mA
	出	力 許	容 損	失	Роит	250 *1	mW
動		作	温	度	Topr	- 40 ~ + 75	
保		存	温	度	Tstg	- 40 ~ + 85	
は	Ь	だ付	け温	度	Tsol	260 *2	

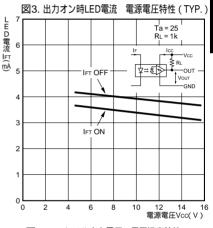

^{*1} 周囲温度が25 を越える場合は、温度定格図をご覧く ださい。

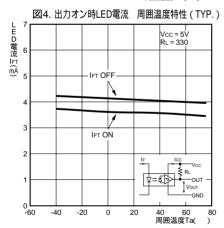

電気的および光学的特性(Ta=25)

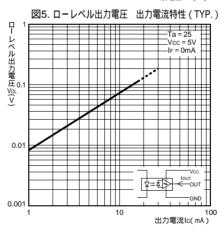
	項	陌		記号	特性値			単位	条件	
		·				MIN.	TYP.	MAX.	半111	示 1十
発	順	電		圧	VF		1.2	1.5	V	IF = 20mA
発光側	逆	電		流	l R		0.01	10	μA	VR = 4V
1則 	ピー!	7 発	光 波	景	Р		940		nm	I _F = 20mA
受光側	ローレ	ベル	出力智	電圧	Vol		0.12	0.4	V	Vcc = 4.5 ~ 16V , IoL = 16mA IF = 0mA
	ハイレ	ベル	出力智	電圧	Vон	15			V	Vcc = 16V , RL = 1k IF = 8mA
	消	貴	電	流	I cc		3.2	10	mA	Vcc = 16V
	ピーク	分光	感度》	皮長	Р		870		nm	Vcc = 4.5 ~ 16V
-	カオフ! カオン!				lғт		3	8	mA	Vcc = 4.5 ~ 16V
۲	ステ	IJ	シ	ス	Н		15		%	Vcc = 4.5 ~ 16V *1
応	答	围	波	数	f	3			kHz	Vcc = 4.5 ~ 16V *2 IF = 15mA , IoL = 16mA
応	答遅	れ	時	間	tplh (tphl)		3		μs	Vcc = 4.5 ~ 16V *3 IF = 15mA , IoL = 16mA
応	答遅	れ	時	間	t _{PHL} (t _{PLH})		20		μs	Vcc = 4.5 ~ 16V *3 IF = 15mA , IoL = 16mA


^{*2} はんだ付け時間は10秒以内


- *1 ヒステリシスは出力状態が反転する2つの状態におけるLED電流 の差を百分率(%)で表したものです。
 - の状態におけるLED電流 *3 応答遅れ時間の定義は下図のとおりです。
- *2 応答周波数の測定は下図の円板を回転させた場合の値です。






定格・特性曲線 注()内は形EE-SX401に適用

