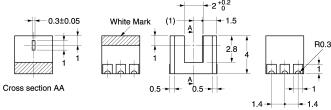

EE-SX4134

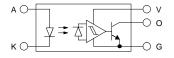

Photomicrosensor (Transmissive)

■ Dimensions

Note: All units are in millimeters unless otherwise indicated.

Recommended soldering patterns

Internal Circuit


Terminal No.

Α

Κ

٧

0 G

Name

Anode

(Vcc) Output (OUT)

Cathode

Supply voltage

Ground (GND)

the tolerances are ±0.15 mm.

Unless otherwise specified,

■ Features

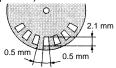
- Ultra-compact model.
- Photo IC output model.
- Operates at a V_{CC} of 2.2 to 7 V.
- PCB surface mounting type.

■ Absolute Maximum Ratings $(Ta = 25^{\circ}C)$

	ltom	Symbol	Dated value
Item		Symbol	Rated value
Emitter	Forward current	I _F	25 mA (see note 1)
	Reverse voltage	V_R	5 V
Detector	Supply voltage	V_{CC}	9 V
	Output voltage	V_{OUT}	17 V
	Output current	I _{OUT}	8 mA
	Permissible output dissipation	P _{OUT}	80 mW (see note 1)
Ambient temperature	Operating	Topr	–25°C to 85°C
	Storage	Tstg	-40°C to 90°C
	Reflow soldering	Tsol	230°C (see note 2)
	Manual soldering	Tsol	300°C (see note 2)

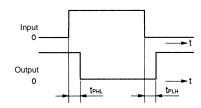
Note:

- 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.
- 2. Complete soldering within 10 seconds for reflow soldering and within 3 seconds for manual soldering.

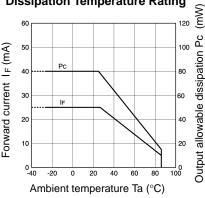

■ Electrical and Optical Characteristics (Ta = 25°C)

ltem		Symbol	Value	Condition	
Emitter	Forward voltage	V _F	1.2 V typ., 1.4 V max.	I _F = 20 mA	
	Reverse current	I_R	0.01 μA typ., 10 μA max.	V _R = 5 V	
	Peak emission wavelength	λР	940 nm typ.	$I_F = 20 \text{ mA}$	
Detector	Power supply voltage	V _{CC}	2.2 V min., 7 V max.		
	Low-level output voltage	V _{OL}	0.12 V typ., 0.4 V max.	$Vcc = 2.2 \text{ to 7 V}, I_{OL} = 8 \text{ mA}, I_F = 7 \text{ mA}$	
	High-level output current	ІОН	10 μA max.	$Vcc = 2.2 \text{ tp 7 V, I}_F = 0 \text{ mA, V}_O = 17 \text{ V}$	
	Current consumption	I _{CC}	2.8 mA typ., 4 mA max.	Vcc = 7 V	
	Peak spectral sensitivity wavelength	λ _P	870 mm typ.	Vcc = 2.2 to 7 V	
LED current when output is ON		I _{FT}	2.0 mA typ., 3.5 mA max.	V _{CC} = 2.2 to 7 V	
Hysteresis		ΔΗ	21% typ.	V _{CC} = 2.2 to 7 V (see note 1)	
Response frequency		f	3 kHz min.	V_{CC} = 2.2 to 7 V, I_F = 5 mA, I_{OL} = 8 mA (see note 2)	
Response delay time		t _{PHL}	7 μs typ.	V_{CC} = 2.2 to 7 V, I_F = 5 mA, I_{OL} = 8 mA (see note 3)	
Response delay time		t _{PLH}	18 μs typ.	V_{CC} = 2.2 to 7 V, I_F = 5 mA, I_{OL} = 8 mA (see note 3)	

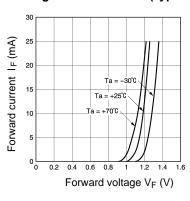
Note: 1. Hysteresis denotes the difference in forward LED current value, expressed in percentage, calculated from the respective forward LED currents when the


photo IC in turned from ON to OFF and when the photo IC in turned from OFF to ON.

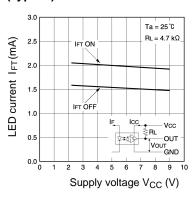
2. The value of the response frequency is measured by rotating the disk as shown below. (P.P.S = pulse/s)

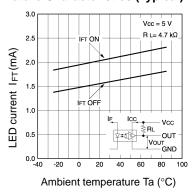


3. The following illustrations show the definition of response delay time.

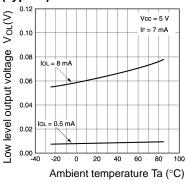


■ Engineering Data

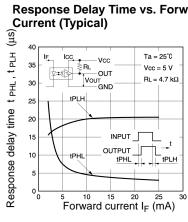

Forward Current vs. Collector Dissipation Temperature Rating


Forward Current vs. Forward Voltage Characteristics (Typical)

LED Current vs. Supply Voltage (Typical)

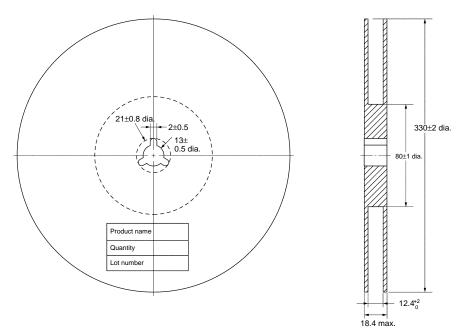

LED Current vs. Ambient Temperature Characteristics (Typical)

Low-level Output Voltage vs. **Output Current (Typical)**

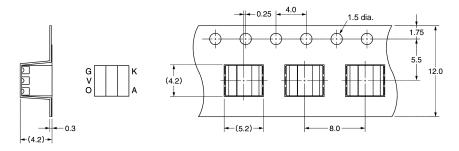

Low-level Output Voltage vs. Ambient Temperature Characteristics (Typical)


Current Consumption vs. Supply Voltage (Typical)

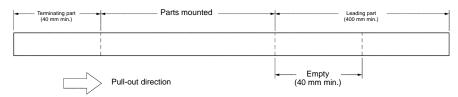
Response Delay Time vs. Forward



Repeat Sensing Position Characteristics (Typical)



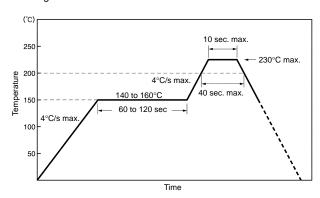
Unit: mm (inch)


■ Tape and Reel Reel

Tape

Tape configuration

Tape quantity 2,000 pcs./reel


Precautions

■ Soldering Information Reflow soldering

• The following soldering paste is recommended:

Melting temperature: 178 to 192°C Composition: Sn 63%, Pb 37%

- The recommended thickness of the metal mask for screen printing is between 0.2 and 0.25 mm.
- Set the reflow oven so that the temperature profile shown in the following chart is obtained for the upper surface of the product being soldered.

Manual soldering

- Use "Sn 60" (60% tin and 40% lead) or solder with silver content.
- Use a soldering iron of less than 25 W, and keep the temperature of the iron tip at 300°C or below.
- Solder each point for a maximum of three seconds.
- After soldering, allow the product to return to room temperature before handling it.

Storage

To protect the product from the effects of humidity until the package is opened, dry-box storage is recommended. If this is not possible, store the product under the following conditions:

Temperature: 10 to 30°C Humidity: 60% max.

The product is packed in a humidity-proof envelope. Reflow soldering must be done within 48 hours after opening the envelope, during which time the product must be stored under 30°C at 80% maximum humidity.

If it is necessary to store the product after opening the envelope, use dry-box storage or reseal the envelope.

Baking

If a product has remained packed in a humidity-proof envelope for six months or more, or if more than 48 hours have lapsed since the envelope was opened, bake the product under the following conditions before use:

> Reel: 60°C for 24 hours or more Bulk: 80°C for 4 hours or more