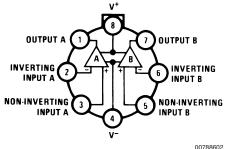


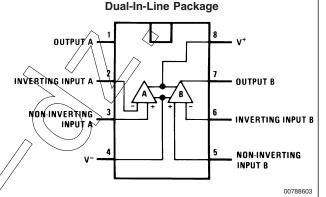
LM1458/LM1558 Dual Operational Amplifier

General Description

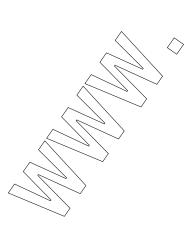

The LM1458 and the LM1558 are general purpose dual operational amplifiers. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.


The LM1458 is identical to the LM1558 except that the LM1458 has its specifications guaranteed over the temperature range from 0°C to +70°C instead of -55°C to +125°C.

Features


- No frequency compensation required /
- Short-circuit protection
- Wide common-mode and differential voltage ranges
- Low-power consumption
- 8-lead can and 8-lead mini DIP
- No latch up when input common mode range is exceeded

Connection Diagrams



Top View Order Number LM1558H, LM1558H/883 or LM1458H See NS Package Number H08C

Top View
Order Number LM1558J/883, LM1458M,
LM1458MX or LM1458N
See NS Package Number J08A, M08A or N08E

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 5)

Supply Voltage

LM1558 ±22V LM1458 ±18V

Power Dissipation (Note 2)

LM1558H/LM1458H 500 mW LM1458N 400 mW

Differential Input Voltage ±30V Input Voltage (Note 3) ±15V Output Short-Circuit Duration Continuous

Operating Temperature Range

LM1558 -55°C to +125°C 0° C to +70 $^{\circ}$ C LM1458

-65°C to +150°C Storage Temperature Range 260°C

Lead Temperature (Soldering, 10 sec.)

Soldering Information Dual-In-Line Package

> Soldering (10 seconds) 260°C

Small Outline Package

Vapor Phase (60 seconds) 215°C 220°C Infrared (15 seconds)

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering

surface mount devices.

ESD tolerance (Note 6)

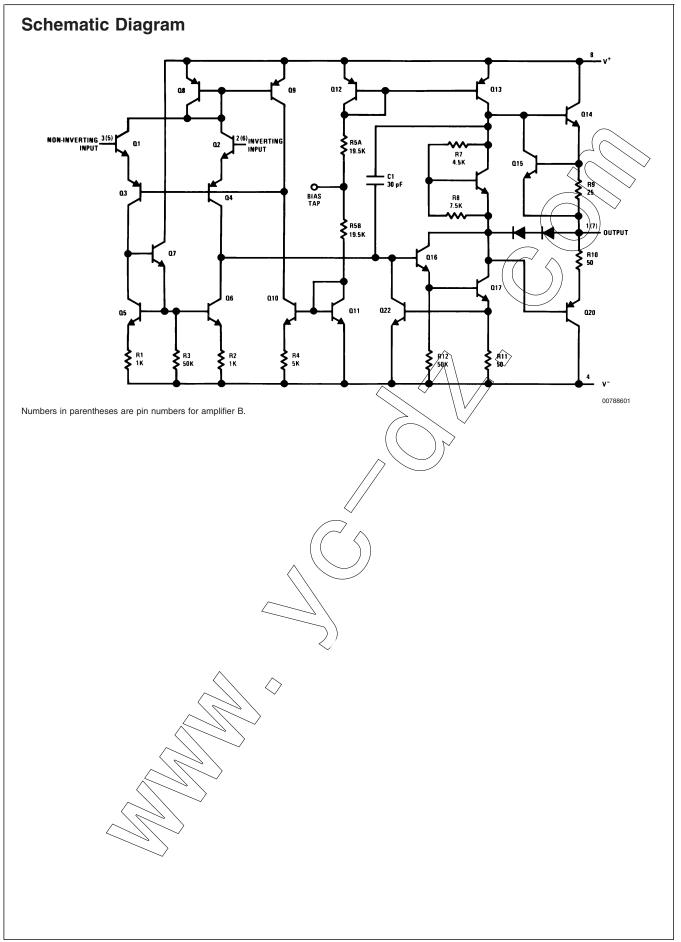
300V

Electrical Characteristics (Note 4)

Parameter	Parameter Conditions LM1558			\triangle		LM1458		
		Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	$T_A = 25^{\circ}C, R_S \le 10 \text{ k}\Omega$	7	1.0	5.0		1.0	6.0	mV
Input Offset Current	T _A = 25°C		80	200		80	200	nA
Input Bias Current	T _A = 25°C		200	500		200	500	nA
Input Resistance	T _A = 25°C	0.3	1.0		0.3	1.0		ΜΩ
Supply Current Both	$T_A = 25^{\circ}C, V_S = \pm 15V$		3.0	5.0		3.0	5.6	mA
Amplifiers	//							
Large Signal Voltage Gain	$T_A = 25^{\circ}C, V_S = \pm 15V$	50	160		20	160		V/mV
	$V_{OUT} = \pm 10V, R_L \ge 2 k\Omega$							
Input Offset Voltage	R _S ≤ 10 kΩ			6.0			7.5	mV
Input Offset Current				500			300	nA
Input Bias Current				1.5			0.8	μA
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$	25			15			V/mV
	$R_L \ge k\Omega$							
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$	±12	±14		±12	±14		V
	$R_L = 2 k\Omega$	±10	±13		±10	±13		V
Input Voltage Range	V _S = ±15V	±12			±12			V
Common Mode	$R_S \le 10 \text{ k}\Omega$	70	90		70	90		dB
Rejection Ratio	$\land \Diamond$							
Supply Voltage	R _S ≤ 10 kΩ	77	96		77	96		dB
Rejection Ratio								

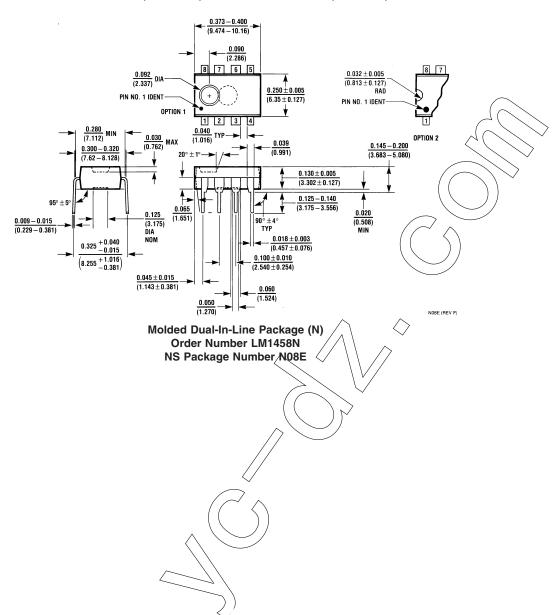
Note 1: "Absolute Maximum Ratings" Indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Note 2: The maximum junction temperature of the LM1558 is 150°C, while that of the LM1458 is 100°C. For operating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of 150°C/W, junction to ambient or 20°C/W, junction to case. For the DIP the device must be derated based on a thermal resistance of 187° D/W, junction to ambient.


Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 4: These specifications apply for $V_S = \pm 15V$ and $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise specified. With the LM1458, however, all specifications are limited to $0^{\circ}C \le T_A \le 70^{\circ}C$ and $V_S = \pm 15V$.

Note 5: Refer to RET\$ 1558V for LM1558J and LM1558H military specifications.


Note 6: Human body model, 1.5 k Ω in series with 100 pF.

www.national.com 2

Physical Dimensions inches (millimeters) unless otherwise noted 0.350 - 0.370(8.890 - 9.398)DIA 0.315 - 0.335DIA (8.001 - 8.509) $\frac{0.025}{(0.635)} \begin{array}{l} \text{MAX} \\ \text{UNCONTROLLED} \\ \text{LEAD DIA} \end{array}$ 0.165 - 0.185 $\overline{(4.191 - 4.699)}$ REFERENCE PLANE SEATING PLĄNĖ 0.035 0.015 - 0.040(0.889) MAX 0.500 (0.381 - 1.016)(12.70)MIN $\frac{0.016-0.019}{(0.406-0.483)} \ \ \text{DIA TYP}$ $\frac{0.195 - 0.205}{(4.953 - 5.207)} \ \, \frac{\text{DIA}}{\text{P.C.}}$ 0.100 (2.540) 0.029 - 0.045 $\overline{(0.737 - 1.143)}$ 0.028 - 0.0340 115 - 0.145 (0.711 - 0.864)(2.921 – 3.683) DIA 45° EQUALLY SPACED H08C (REV E) Metal Can Package (H) Order Number LM1558H, LM1558H/883 or LM1458H NS Package Number H08C 0.228 - 0.244 (5.791 - 6.198) 0.010 MAX LEAD NO. 1 0.150 0.157 (3.810 - 3.988) $\frac{0.053 - 0.069}{(1.346 - 1.753)}$ 0.010 0.026 $\frac{0.004 - 0.010}{(0.102 - 0.254)}$ 8° MAX TYP ALL LEADS SEATING Plane (0.102) 0.098 - 0.010 (9.203 - 0.254) TYP ALL LEADS 0.014-0.020 (0.356-0.508) 0.050 (1.270) TYP ALL LEAD TIPS 0.016 - 0.050 (0.406 - 1.270) TYP ALL LEADS 0.008 (0.203) Small Outline Package (M) Order Number LM1458M or LM1458MX **NS Package Number M08A**

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Americas Customer Support Center Email: new feedback@nsc

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560