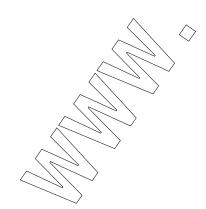


μ PD789026 Subseries


8-Bit Single-Chip Microcontrollers

 μ PD789022 μ PD789024

 μ PD789025

 μ PD789026

 μ PD78F9026A

Document No. U11919EJ4V0UD00 (4th edition)
Date Published February 2003 N CP(K)

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

EEPROM and FIP are trademarks of NEC Electronics Corporation.

Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of September, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets of data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.11-1

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party-tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics America, Inc. (U.S.) • Filiale Italiana

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Europe) GmbH

Duesseldorf, Germany Tel: 0211-65 03 01 Fax: 0211-65 03 327

• Sucursal en España

Madrid, Spain Tel: 091-504 27 87 Fax: 091-504 28 60

Succursale Francaise

Vélizy-Villacoublay, Francé Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

Milano, Italy Tel: 02-66 75/41 Fax: 02-66 75/42 99

• Branch The Netherlands

Eindhoven, The Netherlands Tel:/ 040-244 58 45 Fax:\ 040-244 45 80

Tyskland Filial

Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

United Kingdom Branch

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

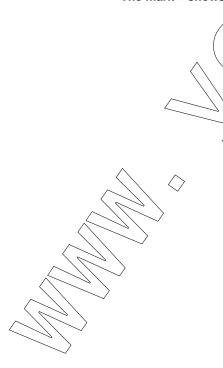
NEC Electronics Shanghai, Ltd.

Shanghai, P.R. China Tel: 021-6841-1138 Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.


Novena Square, Singapore

Tel: 6253-8311 Fax: 6250-3583

Major Revisions in This Edition

Page	Description
Throughout	Deletion of the following packages • 42-pin plastic shrink DIP (CU type) • 44-pin plastic QFP (GB-3BS-MTX type)
p.33	Modification of pin handling of VPP pin
pp.92, 94	Modification of description in 6.4.1 Operation as timer interrupt and 6.4.2 Operation as timer output
p.92	Modification of Caution on rewriting CR20 in 6.4.1 Operation as timer interrupt
pp.97, 98	Addition of 6.5 Notes on Using 16-Bit Timer 20
p.122	Modification of description of PE00 flag in Figure 9-5 Format of Asynchronous-Serial Interface Status Register 00
p.138	Addition of description on reading receive data of UART
p.148	Addition of Caution in Figure 10-2 Format of Interrupt Request Flag Register
pp.172 to 181	Overall revision of contents related to flash memory programming as 13.1 Flash Memory Characteristics
pp.192 to 203	Addition of CHAPTER 15 ELECTRICAL SPECIFICATIONS
p.204	Addition of CHAPTER 16 CHARACTERISTICS CURVES (MASK ROM VERSION)
p.205	Addition of CHAPTER 17 PACKAGE DRAWING
p.206	Addition of CHAPTER 18 RECOMMENDED SOLDERING CONDITIONS
pp.207 to 213	Overall revision of APPENDIX A DEVELOPMENT TOOLS Deletion of embedded software
pp.214, 215	Addition of APPENDIX B NOTES ON TARGET SYSTEM DESIGN

The mark ★ shows the major revised points.

INTRODUCTION

Readers

This manual is intended for user engineers who wish to understand the functions of the μ PD789026 Subseries to design and develop its application systems and programs.

The target subseries is the μ PD789026 Subseries, which consists of the μ PD789022, μ PD789024, μ PD789025, μ PD789026, and μ PD78F9026A.

Purpose

This manual is designed to deepen your understanding of the functions described in the following organization.

Organization

Two manuals are available for the μ PD789026 Subseries: this manual and Instruction Manual (common to the 78K/0S Series).

 μ PD789026 Subseries User's Manual 78K/0S Series
User's Manual
Instructions

- Pin functions
- Internal block functions
- Interrupts
- Other internal peripheral functions:
- Electrical specifications

- CPU function
- Instruction set
- · Instruction description

How to Read This Manual

It is assumed that the readers of this manual have general knowledge of electrical engineering, logic sircuits, and microcontrollers.

- \diamond To understand the overall functions of the μ PD789026 Subseries
 - → Read this manual in the order of the CONTENTS.
- ♦ How to read register formats
 - The name of a bit whose number is enclosed in <> is reserved for the assembler and is defined for the C compiler by the header file sfrbit.h.
- ♦ To learn the detailed functions of a register whose register name is known
 - → See APPENDIX C REGISTER INDEX.
- ♦ To√learn details of the instruction functions of the 78K/0S Series
 - → Refer to **78K/0S Series Instructions User's Manual (U11047E)** separately available.
 - To learn the electrical specifications of the μ PD789026 Subseries
 - → Refer to CHAPTER 15 ELECTRICAL SPECIFICATIONS.

Conventions

Data significance: Higher digits on the left and lower digits on the right

Active low representation: xxx (overscore over pin or signal name)

Note: Footnote for item marked with **Note** in the text

Caution: Information requiring particular attention

Remark: Supplementary information Numerical representation: Binary ... ×××× or ××××B

 ${\sf Decimal}\;...\;\times\!\!\times\!\!\times\!\!$

Hexadecimal ... xxxxH

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
μ PD789026 Subseries User's Manual	This manual
78K/0S Series Instructions User's Manual	U11047E

Documents Related to Development Software Tools (User's Manuals)

Document	Document No.	
RA78K0S Assembler Package	Operation	U14876E
	Language	U14877E
	Structured Assembly Language	U11623E
CC78K0S C Compiler	Operation	U14871E
	Language	U14872E
SM78K Series System Simulator Ver. 2.30 or Later	Operation (Windows™ Based)	U15373E
	External Part User Open Interface Specifications	U15802E
ID78K Series Integrated Debugger Ver. 2.30 or Later	Operation (Windows Based)	U15185E
Project Manager Ver. 3.12 or Later (Windows Based)		U14610E

Documents Related to Development Hardware Tools (User's Manuals)

	Document No.	
IE-78K0S-NS In-Circuit Emulator	((U13549E
IE-78K0S-NS-A In-Circuit Emulator		U15207E
IE-789026-NS-EM1 Emulation Board		U14362E

Documents Related to Flash Memory Writing

Document Name	Document No.
PG-FP3 Flash Memory Programmer User's Manual	U13502E
PG-FP4 Flash Memory Programmer Osec's Manual	U15260E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Other Related Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE - Products and Packages -	X13769X
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

CONTENTS

CHAPTI	ER 1 G	SENERAL	20
1.1	Featur	res	20
1.2		ations	
1.3		ng Information	
1.4	Pin Co	onfiguration (Top View)	22
1.5		S Series Lineup	
1.6		-	26
1.7			27
•••	0.0		
СНАРТІ	FR 2 P	PIN FUNCTIONS	28
			_
2.1		Pin Functions	
2.2		ption of Pin Functions	
	2.2.1	P00 to P07 (Port 0)	30
	2.2.2	P10 to P17 (Port 1)	30
	2.2.3	P20 to P22 (Port 2)	30
	2.2.4	P00 to P07 (Port 0)	31
	2.2.5	P40 to P47 (Port 4)	31
	2.2.6	P50 to P53 (Port 5)	32
	2.2.7	RESET	32
	2.2.8	X1, X2	32
	2.2.9	NC	32
	2.2.10	V _{DD}	32
	2.2.11	Vss	32
	2.2.12	V _{PP} (μPD78F9026A only)IC (mask ROM version only)	33
	2.2.13		
2.3	Pin I/O	Circuits and Recommended Connection of Unused Pins	34
CHAPTI	ER 3 C	CPU ARCHITECTURE	36
3.1		ry Space	
	3.1.1	Internal program memory space	
	3.1.2	Internal data memory (internal high-speed RAM) space	
	3.1.3	Special function register (SFR) area	
	3.1.4	Data memory addressing	
3.2	Proces	ssor Registers	
	3.2.1	Control registers	
	3.2.2	General-purpose registers	
	3.2.3	Special function registers (SFR)	
3.3	^	ction Address Addressing	
	3.3.1	Relative addressing	
	3.3.2	Immediate addressing	
	3.3.3	Table indirect addressing	
	3.3.4	Register addressing	

3.4	Opera	nd Address Addressing	58
	3.4.1	Direct addressing	58
	3.4.2	Short direct addressing	59
	3.4.3	Special function register (SFR) addressing	60
	3.4.4	Register addressing	61
	3.4.5	Register indirect addressing	62
	3.4.6	Based addressing	63
	3.4.7	Stack addressing	63
CHAPT	ER 4 F	PORT FUNCTIONS	64
4.1	Functi	ions of Ports	64
4.2	Port C	ions of Ports	66
	4.2.1	Port 0	66
	4.2.2	Port 1	
	4.2.3	Port 2	68
	4.2.4	Port 3	71
	4.2.5	Port 4	72
	4.2.6	Port 5	73
4.3	Regist	ters Controlling Port Function	76
4.4	Opera	Port 5 ters Controlling Port Function	78
	4.4.1	Writing to I/O port	78
	4.4.2	Reading from I/O port	78
	4.4.3	Arithmetic operation of I/O port	78
СНАРТ	ER 5 C	CLOCK GENERATOR	70
5.1	Functi	ion of Clock Generator	79
5.2			
5.3	_	ter Controlling Clock Generator	
5.4	Syster	m Clock Oscillator	81
	5.4.1	System clock oscillator	
	5.4.2	Examples of incorrect resonator connection	82
	5.4.3	Divider circuit	
5.5	•	tion of Clock Generator	
5.6	Chang	ging Setting of System Clock and CPU Clock	
	5.6.1	Time required for switching between system clock and CPU clock	
	5.6.2	Switching CPU clock	85
	<		
СНАРТ	ER 6 1	6-BIT TIMER 20	86
6.1		ions of 16-Bit Timer 20	
6.2	_ \ \ \ •	guration of 16-Bit Timer 20	
6.3	~	ters Controlling 16-Bit Timer 20	
6.4	•	tion of 16-Bit Timer 20	
	6.4.1	Operation as timer interrupt	
	6.4.2	Operation as timer output	
	6/3	Canture operation	QF

	6.4.4 16-bit timer counter 20 readout	
6.5	Notes on Using 16-Bit Timer 20	
	6.5.1 Restrictions when rewriting 16-bit compare register 20	97
CHADTE	ER 7 8-BIT TIMER/EVENT COUNTER 00	00
CHAFIL		
7.1	Functions of 8-Bit Timer/Event Counter 00	99
7.2	Configuration of 8-Bit Timer/Event Counter 00	<u>,</u> 100
7.3	Registers Controlling 8-Bit Timer/Event Counter 00	101
7.4	Operation of 8-Bit Timer/Event Counter 00	103
	7.4.1 Operation as interval timer	103
	7.4.2 Operation as external event counter	105
	7.4.3 Operation as square wave output	106
7.5	Notes on Using 8-Bit Timer/Event Counter 00	108
CHADTE	ER 8 WATCHDOG TIMER	100
CHAPIE		
8.1	Functions of Watchdog Timer	109
8.2	Configuration of Watchdog Timer Registers Controlling Watchdog Timer Operation of Watchdog Timer	110
8.3	Registers Controlling Watchdog Timer	111
8.4	Operation of Watchdog Timer	113
	8.4.1 Operation as watchdog timer	113
	8.4.2 Operation as interval timer	114
CHAPTE	ER 9 SERIAL INTERFACE 00	115
9.1	Functions of Serial Interface 00	115
9.2	Configuration of Serial Interface 00	115
9.3	Pagistars Controlling Social Interface 00	110
9.4	Registers Controlling Serial Interface 00 Operation of Serial Interface 00	106
9.4		
	9.4.1 Operation stop mode	
	9.4.2 Asynchronous serial interface (UART) mode	
	9.4.3 3-wire serial I/O mode	140
СНАРТЕ	ER 10 INTERRUPT FÜNCTIONS	144
10.1	Interrupt Function Types	144
	Interrupt Sources and Configuration	
	Registers Controlling Interrupt Function	
	Interrupt Servicing Operation	
	10.4.1 Non-maskable interrupt request acknowledgement operation	
	10.4.2 Maskable interrupt request acknowledgement operation	
	10.4.3 Nesting processing	
	10.4.4 Interrupt request hold	
	10.7.7 Intorrupt request noid	159
		_
CHAPTE	ER 11 STANDBY FUNCTION	160
11.1	Standby Function and Configuration	160

11.1.1	Standby function		160
11.1.2	Standby function control register		161
11.2 Opera	ation of Standby Function		162
11.2.1	HALT mode		162
11.2.2	STOP mode		165
CHADTED 12	DESET FUNCTION		160
CHAPTER 12	RESET FUNCTION		100
CHAPTER 13	μPD78F9026A		171
	•		170
13.1 Flash	Memory Characteristics Programming environment		1/2
	Programming environment		1/2
13.1.2			173
13.1.3			
13.1.4	Connection of adapter for flash writing		179
		\wedge	
CHAPTER 14	INSTRUCTION SET	·/·/	182
14.1 Opera	Operand identifiers and writing methods Description of "Operation" column Description of "Flag" column		182
14 1 1	Operand identifiers and writing methods	\\/	182
14 1 2	Description of "Operation" column		183
14.1.2	Description of "Flag" column		183
14.2 Oners	ation List	·/·/	184
14.2 Opere	ictions Listed by Addressing Type		180
1110 1110114	Submo Elotod by Addressing Type		
	~ · · · · · · · · · · · · · · · · · · ·		
CHAPTER 15	ELECTRICAL SPECIFICATIONS		192
CHAPTER 16	CHARACTERISTICS CURVES (MASK R	OM VERSION)	204
	~ \\		
CHARTER 17	DACKACE DRAWING		205
CHAPIER 17	PACKAGE DRAWING		205
	\checkmark		
CHAPTER 18	RECOMMENDED SOLDERING CONDITION	ONS	206
	\Diamond		
ADDENIDIY A	DEVELORMENT TOOLS		207
A.1 Softw	are Package		209
/~	page Processing Software		
(\	ol Software		
	Memory Writing Tools		
A.5 Debu	gging Tools (Hardware)		211
A.6 Debu	gging Tools (Software)		212
A.7 Conve	ersion Adapter (TGB-044SAP) Drawing		213
VDDENIDIA B	NOTES ON TARGET SYSTEM DESIGN		21/

APPENDIX	C REGIS	STER INDEX .				216
C.1 R	egister Na	me Index				216
APPENDIX	D REVIS	ION HISTOR	Υ			220
					/	
						$\langle \rangle$
				^	. ^	
					\rightarrow	
					\\	
					>	
				7 ^		
))		
		\wedge				
			\Diamond			
	<					
		\rightarrow				

LIST OF FIGURES (1/3)

Figure No.	Title	Page
2-1	Pin I/O Circuits	35
3-1	Memory Map (μPD789022)	36
3-2	Memory Map (μPD789024)	37
3-3	Memory Map (μPD789025)	38
3-4	Memory Map (μPD789026)	<i></i> 39
3-5	Memory Map (µPD78F9026A)	40
3-6	Data Memory Addressing (µPD789022)	43
3-7	Data Memory Addressing (μPD789024)	44
3-8	Data Memory Addressing (μPD789025)	
3-9	Data Memory Addressing (μPD789026)	46
3-10	Data Memory Addressing (μPD78F9026A)	47
3-11	Program Counter Configuration	48
3-12	Program Status Word Configuration	48
3-13	Stack Pointer Configuration	50
3-14	Data to Be Saved to Stack Memory	50
3-15	Data to Be Restored from Stack Memory	50
3-16	General-Purpose Register Configuration	
4-1	Port Types	64
4-2	Port Types	66
4-3	Block Diagram of P10 to P17	67
4-4	Block Diagram of P20	68
4-5	Block Diagram of P21	69
4-6	Block Diagram of P22	70
4-7	Block Diagram of P30 to P32	71
4-8	Block Diagram of P40 to P47	72
4-9	Block Diagram of R50	73
4-10	Block Diagram of P51	74
4-11	Block Diagram of P52 and P53	75
4-12	Format of Port Mode Register	77
4-13	Format of Pull-Up Resistor Option Register	77
5-1	Block Diagram of Clock Generator	
5-2	Format of Processor Clock Control Register	
5-3	External Circuit of System Clock Oscillator	
5-4	Examples of Incorrect Resonator Connection	
5-5	Switching CPU Clock	85
6-1	Rlock Diagram of 16-Rit Timer 20	87

LIST OF FIGURES (2/3)

Figure No.	Title	Page
6-2	Format of 16-Bit Timer Mode Control Register 20	90
6-3	Format of Port Mode Register 5	-11 /
6-4	Settings of 16-Bit Timer Mode Control Register 20 for Timer Interrupt Operation	92
6-5	Timer Interrupt Operation Timing	, \ '
6-6	Settings of 16-Bit Timer Mode Control Register 20 for Timer Output Operation	94 پر
6-7	Timer Output Timing	94
6-8	Settings of 16-Bit Timer Mode Control Register 20 for Capture Operation	95
6-9	Capture Operation Timing (Both Edges of CPT2 Pin Are Specified)	95
6-10	Readout Timing of 16-Bit Timer Counter 20	96
7-1	Block Diagram of 8-Bit Timer/Event Counter 00	100
7-2	Format of 8-Bit Timer Mode Control Register 00	101
7-3	Format of Port Mode Register 5	102
7-4	Format of Port Mode Register 5	104
7-5	External Event Counter Operation Timing (with Rising Edge Specified)	105
7-6	Savere West Output Timing	107
7-7	Start Timing of 8-Bit Timer Counter 00	108
7-8	One Pulse Count Operation Timing	108
8-1	Block Diagram of Watchdog Timer	110
8-2	Format of Timer Clock Select Register 2	111
8-3	Format of Watchdog Timer Mode Register	
9-1	Block Diagram of Serial Interface 00	116
9-2		
9-3	Format of Serial Operation Mode Register 00.	
9-4	Format of Asynchronous Serial Interface Mode Register 00	
9-5	Format of Asynchronous Serial Interface Status Register 00	
9-6	Format of Baud Rate Generator Control Register 00.	
9-7	Format of Asynchronous Serial Interface Transmit/Receive Data	
9-8	Asynchronous Serial Interface Transmission Completion Interrupt Timing	
9-9	Asynchronous Serial Interface Reception Completion Interrupt Timing	
9-10	Receive Error Timing	
9-11	3-Wire Serial I/O Mode Timing	143
10-1	Basic Configuration of Interrupt Function	146
10-2	Format of Interrupt Request Flag Register	148
10-3	Format of Interrupt Mask Flag Register	
10-4	Format of External Interrupt Mode Register 0	150
10-5	Configuration of Program Status Word	151

LIST OF FIGURES (3/3)

Figure No.	Title	Page
10-6	Format of Key Return Mode Register 00	152
10-7	Block Diagram of Falling Edge Detector	152
10-8	Flowchart from Non-Maskable Interrupt Request Generation to Acknowledgement	154
10-9	Non-Maskable Interrupt Request Acknowledgement Timing	154
10-10	Non-Maskable Interrupt Request Acknowledgement Timing	√ 154
10-11	Interrupt Request Acknowledgement Processing Algorithm	156
10-12	Interrupt Request Acknowledgement Timing (Example of MOV A, r)	157
10-13	Interrupt Request Acknowledgement Timing (When Interrupt Request Flag Is Set at Last C	
	Instruction Execution)	_
10-14	Example of Nesting	
11-1	Format of Oscillation Stabilization Time Select Register	161
11-2	Releasing HALT Mode by Interrupt	163
11-3	Releasing HALT Mode by RESET Input	164
11-4	Releasing STOP Mode by Interrupt	166
11-5	Releasing HALT Mode by Interrupt Releasing STOP Mode by Interrupt Releasing STOP Mode by RESET Input Releasing STOP Mode by RESET Input	167
12-1	Block Diagram of Reset Function	168
12-2	Reset Timing by RESET Input	169
12-3	Reset Timing by Overflow in Watchdog Timer	169
12-4	Reset Timing by RESET Input in \$TOP Mode	169
13-1	Environment for Writing Program to Flash Memory	172
13-2	Communication Mode Selection Format	
13-3	Example of Connection with Dedicated Flash Programmer	
13-4	VPP Pin Connection Example	
13-5	Signal Conflict (Input Pin of Serial Interface)	
13-6	Abnormal Operation of Other Device	
13-7	Signal Conflict (RESET Pin)	
13-8	Wiring Example for Flash Writing Adapter with 3-Wire Serial I/O	
13-9	Wiring Example for Flash Writing Adapter with UART	
13-10	Wiring Example for Flash Writing Adapter with Pseudo 3-Wire (When P0 Is Used)	181
A-1	Development Tools	208
A-2 _	TGB-044SAP Package Drawing (Reference)	213
B-1	Distance Between In-Circuit Emulator and Conversion Adapter	214
B-2	Connection Condition of Target System (NP-H44GB-TQ)	215

LIST OF TABLES (1/2)

Table No.	Title	Page
2-1	Types of Pin I/O Circuits and Recommended Connection of Unused Pins	34
3-1	Internal ROM Capacity	41
3-2		·41
3-3		42
3-4	Special Function Registers	53
4-1	Port Functions	
4-2	Port Configuration	66
4-3	Port Mode Register and Output Latch Settings When Using Alternate Functions	76
5-1	Configuration of Clock Generator	79
5-2	Maximum Time Required for Switching CPU Clock	85
-		
6-1	Configuration of 16-Bit Timer 20	87
6-2	Interval Time of 16-Bit Timer 20.	
6-3	Settings of Capture Edge	95
7-1	Interval Time of 8-Bit Timer/Event Counter 00	99
7-2	Square Wave Output Range of 8-Bit Timer/Event Counter 00	
7-3	Configuration of 8-Bit Timer/Event Counter 00	100
7-4	Interval Time of 8-Bit Timer/Event Counter 00	
7-5	Square Wave Output Range of 8-Bit Timer/Event Counter 00	106
8-1	Inadvertent Loop Detection Time of Watchdog Timer	109
8-2	Interval Time	109
8-3	Configuration of Watchdog Timer	110
8-4	Inadvertent Loop Detection Time of Watchdog Timer	113
8-5	Interval Time of Interval Timer	114
9-1	Configuration of Serial Interface 00	115
9-2	Operating Mode Settings of Serial Interface 00	121
9-3	Example of Relationship Between System Clock and Baud Rate	124
9-4	Relationship Between ASCK Pin Input Frequency and Baud Rate (When BRGC00 Is Set to 80H)	125
9-5	Example of Relationship Between System Clock and Baud Rate	132
9-6	Relationship Between ASCK Pin Input Frequency and Baud Rate (When BRGC00 Is Set to 80H)	132
9-7	Receive Error Causes	137
10-1	Interrupt Source List	115
10-1	Flags Corresponding to Interrupt Request Signal Names	
10-2	- riago Comosponding to interrupt riequest Oighai Nailles	14/

LIST OF TABLES (2/2)

Table No.	Title	Page
10-3	Time from Generation of Maskable Interrupt Request to Servicing	155
11-1	HALT Mode Operating Status	162
11-2	Operation After Release of HALT Mode	164
11-3	STOP Mode Operating Status	165
11-4	Operation After Release of STOP Mode	167
12-1	Hardware Status After Reset	170
13-1	Differences Between μ PD78F9026A and Mask ROM Versions	171
13-2	Communication Mode List	
13-3		175
	^/\\	
14-1	Operand Identifiers and Writing Methods	182
18-1	Surface Mounting Type Soldering Conditions	206
/		

CHAPTER 1 GENERAL

1.1 Features

· ROM and RAM capacity

Part Number	Program Mo	emory		Data Memory
μPD789022	ROM	4 KB	256 bytes	
μPD789024		8 KB		
μPD789025		12 KB	512 bytes	
μPD789026		16 KB		
μPD78F9026A	Flash memory	16 KB		

• Minimum instruction execution time can be changed from high-speed (0.4 μ s) to low-speed (1.6 μ s) at 5.0 MHz operation with system clock

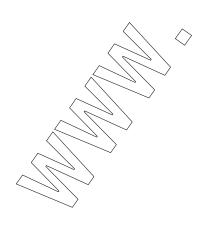
• I/O ports: 34 lines

• Serial interface: 1 channel

3-wire serial I/O mode/UART mode selectable

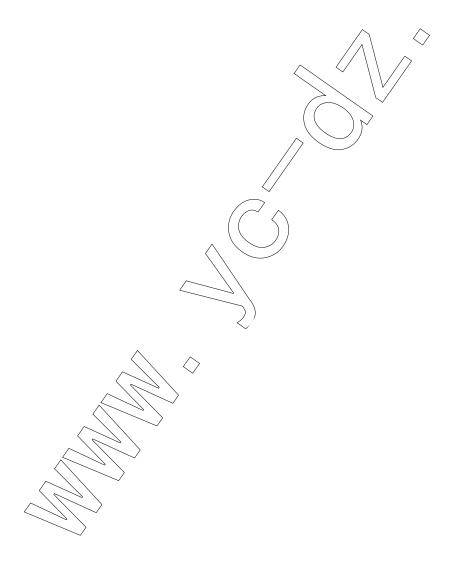
• Timer: 3 channels

16-bit timer: 1 channel
8-bit timer/event counter: 1 channel
Watchdog timer: 1 channel


• Vectored interrupts: 10

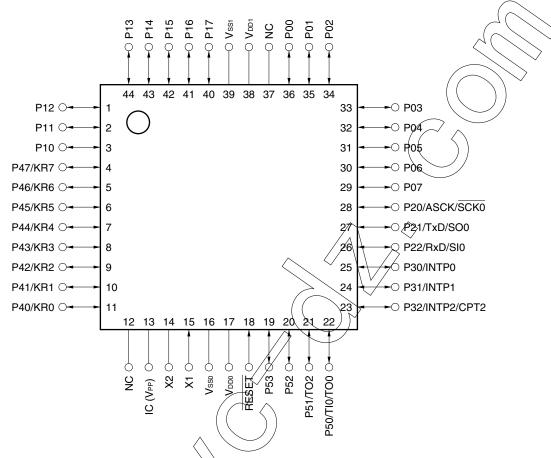
• Supply voltage: VDD = 1.8 to 5.5 V

• Operating ambient temperature: $T_A = -40 \text{ to } +85^{\circ}\text{C}$


1.2 Applications

Home appliances, car accessories, air conditioners, game machines, etc.

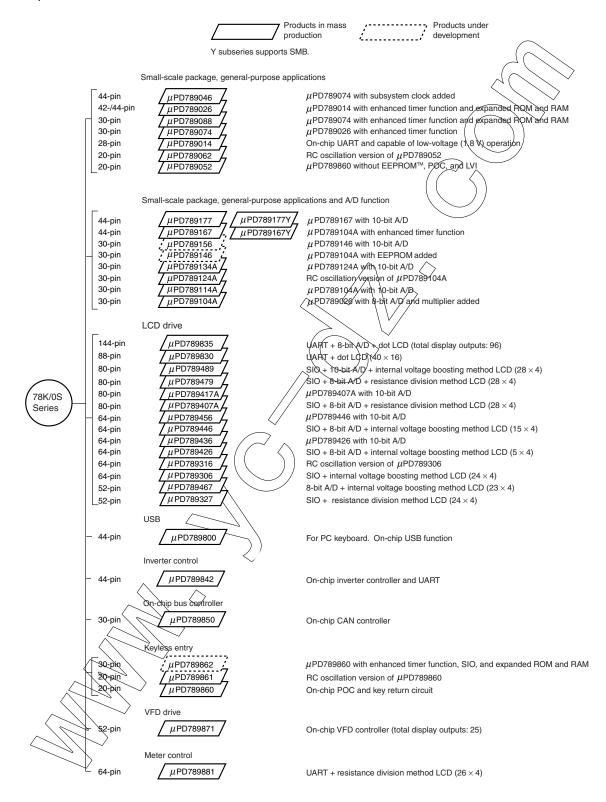
1.3 Ordering Information


Part Number	Package	Internal ROM						
μ PD789022GB- \times \times -8ES	44-pin plastic LQFP (10 × 10)	Mask ROM						
μ PD789024GB- \times \times -8ES	44-pin plastic LQFP (10 \times 10)	Mask ROM						
μ PD789025GB- \times \times -8ES	44-pin plastic LQFP (10 \times 10)	Mask ROM						
μ PD789026GB- \times \times -8ES	44-pin plastic LQFP (10 \times 10)	Mask ROM						
μ PD78F9026AGB-8ES	44-pin plastic LQFP (10 \times 10)	Flash memory						
Remark xxx indicates ROM code suffix.								

1.4 Pin Configuration (Top View)

• 44-pin plastic LQFP (10 × 10)

 μ PD789022GB-xxx-8ES μ PD789024GB-xxx-8ES μ PD789025GB-xxx-8ES μ PD789026GB-xxx-8ES μ PD78F9026AGB-8ES


Caution Connect the IC pin directly to Vssq or Vss1.

Remark The item in parentheses applies to the µPD78F9026A only.

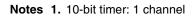
ASCK:	Asynchronous serial clock	RESET:	Reset
CPT2:	Capture trigger input	RxD:	Receive data
IC:	Internally connected	SCK0:	Serial clock
INTP0 to INTP2:	Interrupt from peripherals	SI0:	Serial input
KR0 to KR7:	Key return	SO0:	Serial output
NC:	Non-connection	TIO:	Timer input
P00 to P07:	Port 0	TO0, TO2:	Timer output
P10 to P17:	Ront	TxD:	Transmit data
P20 to P22:	Port2	VDD0, VDD1:	Power supply
P30 to P32:	Port 3	VPP:	Programming power supply
P40 to P47:	Port 4	Vsso, Vss1:	Ground
P50 to P53:	Port 5	X1, X2:	Crystal

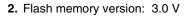
1.5 78K/0S Series Lineup

The products in the 78K/0S Series are listed below. The names enclosed in boxes are subseries names.

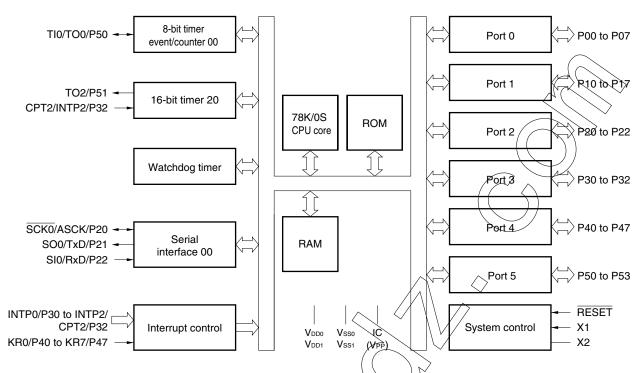
Remark VFD (Vacuum Fluorescent Display) is referred to as FIP[™] (Fluorescent Indicator Panel) in some documents, but the functions of the two are the same.

The major functional differences between the subseries are listed below.

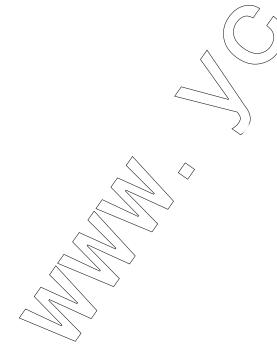

Series for general-purpose applications and LCD drive


	Function	ROM		Tir	mer		8-Bit	10-Bit	Serial Interface	I/O	V _{DD}	Remarks
Subseries		Capacity (Bytes)	8-Bit	16-Bit	Watch	WDT	A/D	A/D			MIN.Value	
Small-	μPD789046	16 K	1 ch	1 ch	1 ch	1 ch	_	_	1 ch (UART: 1 ch)	34	1.8 V	
scale package,	μ PD789026	4 K to 16 K			-						.(
general-	μPD789088	16 K to 32 K	3 ch							24		
purpose	μ PD789074	2Kto8K	1 ch									\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
applica- tions	μPD789014	2 K to 4 K	2 ch	-						22		
	μPD789062	4 K							-	14		RC-oscillation version
	μPD789052										$\langle \rangle$	
Small-	μPD789177	16 K to 24 K	3 ch	1 ch	1 ch	1 ch	_	8 ch	1 ch (UART: 1 ch)	31	1,8 V	-
scale	μPD789167						8 ch	-	· ·			
package, general-	μPD789156	8 K to 16 K	1 ch		-		-	4 ch		20		On-chip
purpose	μPD789146						4 ch	_				EEPROM
applica- tions +	μPD789134A	2 K to 8 K					-	4 ch				RC-oscillation
A/D	μPD789124A						4 ch	-				version
converter	μPD789114A						_ <	4 ch				-
	μPD789104A						4 ch					
LCD	μPD789835	24 K to 60 K	6 ch	-	1 ch	1 ch	3 ch	((1 ch (UART: 1 ch)	37	1.8 V ^{Note}	Dot LCD
drive	μPD789830	24 K	1 ch	1 ch			- /			30	2.7 V	supported
	μPD789489	32 K to 48 K	3 ch					8 ch	2 ch (UART: 1 ch)	45	1.8 V	-
	μPD789479	24 K to 48 K					8 ch	-				
	μPD789417A	12 K to 24 K				<	/_	7 ch	1 ch (UART: 1 ch)	43		
	μPD789407A				,		7 _{ch}	-				
	μ PD789456	12 K to 16 K	2 ch		(()-)	6 ch		30		
	μPD789446						6 ch	-				
	μPD789436)	-	6 ch		40		
	μPD789426			_			6 ch	_				
	μPD789316	8 K to 16 K					_		2 ch (UART: 1 ch)	23		RC-oscillation version
	μPD789306					\sim						
	μPD789467	4 K to 24 K					1 ch		_	18		
	μPD789327				>		_		1 ch	21		

Note Flash memory version: 3.0 V


Series for ASSP

	Function	ROM		Tir	mer	•	8-Bit	10-Bit	Serial Interface	I/O	V _{DD}	Remarks
Subseries		Capacity (Bytes)	8-Bit	16-Bit	Watch	WDT	A/D	A/D			MIN.Value	
USB	μPD789800	8 K	2 ch	_	ı	1 ch	ı	ı	2 ch (USB: 1 ch)	31	4.0 V	ı
Inverter control	μPD789842	8 K to 16 K	3 ch	Note 1	1 ch	1 ch	8 ch	ı	1 ch (UART: 1 ch)	30	4.0 V	-
On-chip bus controller	μPD789850	16 K	1 ch	1 ch	İ	1 ch	4 ch	I	2 ch (UART: 1 ch)	18	4.0 X	\rightarrow -
Keyless entry	μPD789861	4 K	2 ch	-	-	1 ch	-	-		14	1.8 V	RC-oscillation version, on-chip EEPROM
	μPD789860)		On-chip
	μPD789862	16 K	1 ch	2 ch					1 ch (UART: 1 ch)	22		EEPROM
VFD drive	μPD789871	4 K to 8 K	3 ch	_	1 ch	1 ch	-		1 ch	33	2.7 V	-
Meter control	μPD789881	16 K	2 ch	1 ch	_	1 ch	_		1 ch (UART: 1 ch)	28	2.7 V ^{Note 2}	_



1.6 Block Diagram

Remarks 1. The internal ROM and internal high-speed RAM capasities differ depending on the product.

1.7 Overview of Functions

	Part Number	μPD789022	μPD789024	μPD789025	μPD789026	μPD78F9026A		
Item		•	,	•	,	,		
Internal memory	ROM	Mask ROM				Flash memory		
		4 KB	8 KB	12 KB	16 KB	16 KB		
	High-speed RAM	256 bytes		512 bytes	40			
Minimum instruction	on execution time	0.4/1.6 μs (when	operated at 5.0 M	Hz with system cl	ock)	\		
Instruction set		16-bit operations Bit manipulation (set, reset, test), etc.						
I/O ports		Total: 34 • CMOS I/O: 34						
Serial interface		3-wire serial I/O mode/UART mode selectable: 1 channel						
Timer		16-bit timer: 1 channel 8-bit timer/event counter: 1 channel Watchdog timer: 1 channel						
Timer outputs		2						
Vectored interrupt	Maskable	Internal: 5, Exteri	nal: /4					
sources	Non-maskable	Internal: 1						
Power supply volta	ige	V _{DD} = 1.8 to 5.5 V						
Operating ambient	temperature	$T_A = -40 \text{ to } +85^{\circ}\text{C}$						
Package	<u> </u>	44-pin plastic LQFP (10 × 10)						

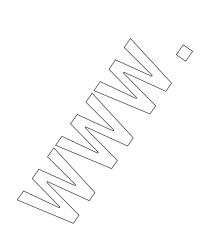
The outline of the timer is as follows.

		16-Bit Timer 20	8-Bit Timer/Event Counter 00	Watchdog Timer
Operating	Interval timer	_	1 channel	1 channel ^{Note}
mode	External event counter	1	1 channel	-
Function	Timer output	output	1 output	_
	Capture	1 input	-	_
	Interrupt source	1	1	2

Note The watchdog timer has watchdog timer and interval timer functions. Select one of them.

27

CHAPTER 2 PIN FUNCTIONS


2.1 List of Pin Functions

(1) Port pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00 to P07	I/O	Port 0 8-bit I/O port Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can be specified by setting the pull-up resistor option register (PUO). LEDs can be driven directly.	Input	
P10 to P17	1/0	Port 1 8-bit I/O port Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can be specified by setting the pull-up resistor option register (PUO). LEDs can be driven directly.	Input	
P20	I/O	Port 2	Input	SCK0/ASCK
P21		3-bit I/O port Input/output can be specified in 1-bit units		SO0/TxD
P22		When used as an input port, use of an on-chip pull-up resistor can be specified by setting the pull-up resistor option register (PUO). LEDs can be driven directly.		SI0/RxD
P30	I/O	Port 3	Input	INTP0
P31		3-bit I/O port		INTP1
P32		Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can be specified by setting the pull-up resistor option register (PUO). LEDs can be driven directly.		INTP2/CPT2
P40 to P47	1/0	Port 4 8-bit I/O port Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can be specified by setting the pull-up resistor option register (PUQ). LEDs can be driven directly.	Input	KR0 to KR7
P50	1/0	Port.5	Input	TI0/TO0
P51		4-bit I/O port		TO2
P52, P53		Imput/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can be specified by setting the pull-up resistor option register (PUO). LEDs can be driven directly.		1

(2) Non-port pins

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input for which the valid edge (rising	Input	P30
INTP1	=	edge, falling edge, or both rising and falling edges) can be		P31
INTP2		specified	/	P32/CPT2
KR0 to KR7	Input	Key return signal detection	Input	P40 to P47
SI0	Input	3-wire serial interface serial data input	Input 🗸 🤇	R22/RxD
SO0	Output	3-wire serial interface serial data output	Input	P21/TxD
SCK0	I/O	3-wire serial interface serial clock input/output	Input	P20/ASCK
ASCK	Input	Asynchronous serial interface serial clock input	Input	P20/SCK0
RxD	Input	Asynchronous serial interface serial data input	Input	P22/SI0
TxD	Output	Asynchronous serial interface serial data output	Input	P21/SO0
TO2	Output	16-bit timer 20 output	Imput	P51
CPT2	Input	16-bit timer capture edge input	Input	P32/INTP2
TI0	Input	External count clock input to 8-bit timer/event counter 00	Input	P50/TO0
TO0	Output	8-bit timer/event counter 00 output	Input	P50/TI0
X1	Input	Connection of crystal for system clock oscillation	-	_
X2	_		-	_
RESET	Input	System reset input	Input	_
NC	_	Not connected internally. Connect this pin to the Vsso or Vss1 pin (it can also be left open).	-	-
V _{DD0}	-	Positive power supply for ports	-	_
V _{DD1}	-	Positive power supply (except for ports)	-	_
Vsso	-	Ground potential for ports	-	_
V _{SS1}	-	Ground potential (except for ports)	-	-
IC	_	Internally connected. Connect this pin directly to the Vsso or Vss1 pin.	-	-
VPP	-	Flash memory programming mode setting. Apply high voltage during program write/verify.	_	-

2.2 Description of Pin Functions

2.2.1 P00 to P07 (Port 0)

These pins constitute an 8-bit I/O port and can be set to input or output port mode in 1-bit units by using port mode register 0 (PM0). When these pins are used as an input port, an on-chip pull-up resistor can be used by setting the pull-up resistor option register (PUO).

This port can drive LEDs directly.

2.2.2 P10 to P17 (Port 1)

These pins constitute an 8-bit I/O port and can be set to input or output port mode in 1-bit units by using port mode register 1 (PM1). When these pins are used as an input port, an on-chip pull-up resistor can be used by setting the pull-up resistor option register (PUO).

This port can drive LEDs directly.

2.2.3 P20 to P22 (Port 2)

These pins constitute a 3-bit I/O port. In addition, they also function as the data and clock I/O of the serial interface.

This port can drive LEDs directly.

Port 2 can be specified in the following operation modes in 1-bit units,

(1) Port mode

In this mode, port 2 functions as a 3-bit I/O port. Port 2 can be set to input or output port mode in 1-bit units by using port mode register 2 (PM2). When the port is used as an input port, an on-chip pull-up resistor can be used by setting the pull-up resistor option register (PNO).

(2) Control mode

In this mode, port 2 functions as the data I/O and the clock I/O of the serial interface.

(a) SI0, SO0

These are the serial data I/O pins of the serial interface.

(b) SCK0

This is the serial clock I/O pin of the serial interface.

(c) RxD, TxD

These are the serial data KO pins of the asynchronous serial interface.

(d) ASCK

This is the serial clock input pin of the asynchronous serial interface.

Caution When using port 2 as serial interface pins, the I/O mode and output latch must be set according to the function to be used. For details of the setting, see Table 9-2 Operating Mode Settings of Serial Interface 00.

2.2.4 P30 to P32 (Port 3)

These pins constitute a 3-bit I/O port. In addition, they also function as external interrupt and capture edge inputs.

This port can drive LEDs directly.

Port 3 can be specified in the following operation modes in 1-bit units.

(1) Port mode

In this mode, port 3 functions as a 3-bit I/O port. Port 3 can be set to input or output port mode in 1-bit units by using port mode register 3 (PM3). When the port is used as an input port, an on-chip pull-up resistor can be used by setting the pull-up resistor option register (PUO).

(2) Control mode

In this mode, port 3 functions as the external interrupt input pins.

(a) INTP0 to INTP2

These pins input external interrupts for which the valid edges (rising edge, falling edge, or both rising and falling edges) can be specified.

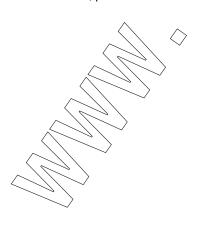
(b) CPT2

This is the capture edge input pin.

2.2.5 P40 to P47 (Port 4)

These pins constitute an 8-bit I/O port. In addition, they also function as key return signal detection pins.

This port can drive LEDs directly.


Port 4 can be specified in the following operation modes in 1-bit units.

(1) Port mode

In this mode, port 4 functions as an 8-bit I/O port. Port 4 can be set to input or output port mode in 1-bit units by using port mode register 4 (PM4). When the port is used as an input port, an on-chip pull-up resistor can be used by setting the pull-up resistor option register (PUO).

(2) Control mode

In this mode, port 4 functions as the key return signal detection pins (KR0 to KR7).

2.2.6 P50 to P53 (Port 5)

These pins constitute a 4-bit I/O port. In addition, they also function as timer I/O pins.

This port can drive LEDs directly.

Port 5 can be specified in the following operation modes in 1-bit units.

(1) Port mode

In this mode, port 5 functions as a 4-bit I/O port. Port 5 can be set to input or output port mode in 1-bit units by using port mode register 5 (PM5). When the port is used as an input port, an on-chip pull-up resistor can be used by setting the pull-up resistor option register (PUO).

(2) Control mode

In this mode, port 5 functions as the timer I/O.

(a) TI0

This is the external clock input pin for 8-bit timer/event counter 00.

(b) TO0

This is the 8-bit timer/event counter 00 output pin.

(c) TO2

This is the 16-bit timer 20 output pin.

2.2.7 **RESET**

This pin inputs an active-low system reset signal.

2.2.8 X1, X2

These pins are used to connect a crystal resonator for system clock oscillation.

To supply an external clock, input the clock to X1 and input the inverted signal to X2.

2.2.9 NC

The NC (non-connection) pin is not connected internally. Connect this pin to the Vsso or Vss1 pin (it can also be left open).

2.2.10 VDD

This is the positive power supply pin.

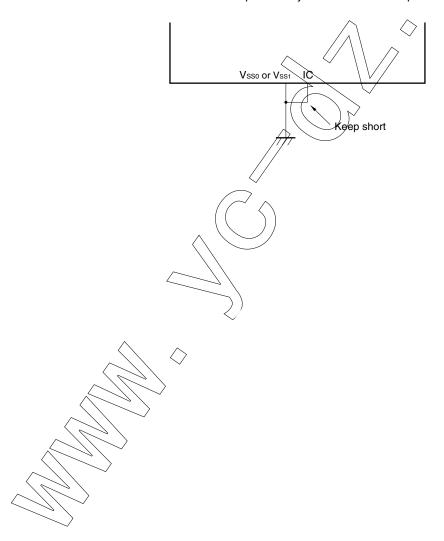
2.2.11 Vss

This is the ground potential pin.

2.2.12 VPP (μPD78F9026A only)

A high voltage should be applied to this pin when the flash memory programming mode is set and when the program is written or verified.

Handle the pins in either of the following ways.

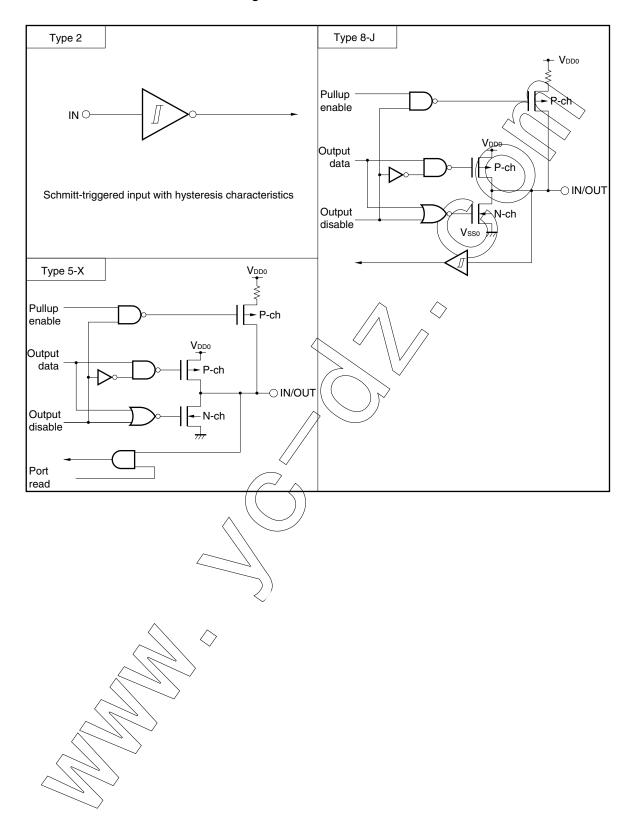

- Independently connect a 10 $k\Omega$ pull-down resistor.
- Switch this pin to be directly connected to the dedicated flash programmer in programming mode or to Vsso or Vss1 in normal operation mode using a jumper on the board.

2.2.13 IC (mask ROM version only)

The IC (internally connected) pin is used to set the μ PD789026 Subseries in the test mode for testing before shipment. In the normal operating mode, directly connect the IC pin to the Vsso or Vsst pin with as short a wire as possible.

If a potential difference is generated between the IC pin and Vsso or Vss1 pin due to a long wiring length between these pins, or external noise is superimposed on the IC pin, the user program may not run correctly.

• Connect the IC pin directly to the Vsso or Vss1 pin.


2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The I/O circuit type of each pin and recommended connection of unused pins are shown in Table 2-1. For the I/O circuit configuration of each type, see Figure 2-1.

Table 2-1. Types of Pin I/O Circuits and Recommended Connection of Unused Pins

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins	
P00 to P07	5-X	I/O	Input: Independently connect to VDD0, VDD1, VSS0, or VSS1	
P10 to P17			via a resistor. Output: Leave open.	
P20/ASCK/SCK0	8-J			
P21/TxD/SO0	5-X			
P22/RxD/SI0	8-J			
P30/INTP0				
P31/INTP1				
P32/INTP2/CPT2				
P40/KR0 to P47/KR7				
P50/TI0/TO0				
P51/TO2	5-X			
P52, P53				
RESET	2	Input	-	
NC			Connect directly to Vsso or Vss1 (can also be left open).	
IC (mask ROM version)		//	Connect directly to Vsso or Vss1.	
V _{PP} (μPD78F9026A)			Independently connect to a 10 kΩ pull-down resistor or directly to Vss₀ or Vss₁.	

Figure 2-1. Pin I/O Circuits

CHAPTER 3 CPU ARCHITECTURE

3.1 Memory Space

The μ PD789026 Subseries can access 64 KB of memory space. Figures 3-1 through 3-5 show the memory maps.

Figure 3-1. Memory Map (μPD789022) FFFFH Special function registers 256×8 bits FF00H **FEFFH** Internal high-speed RAM 256×8 bits FE00H **FDFFH** Reserved Data memory space 0FFFH 1000H 0FFFH Program area 0080H Program Internal ROM 007FH memory space $4,096 \times 8$ bits CALLT table area 0040H 003FH Program area 002CH 002BH Vector table area 9000H 0000H

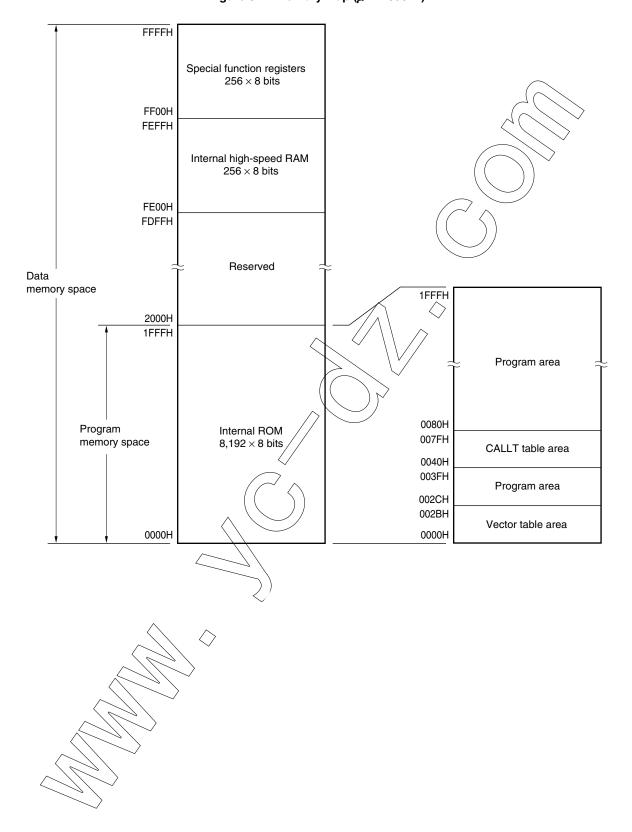


Figure 3-2. Memory Map (μPD789024)

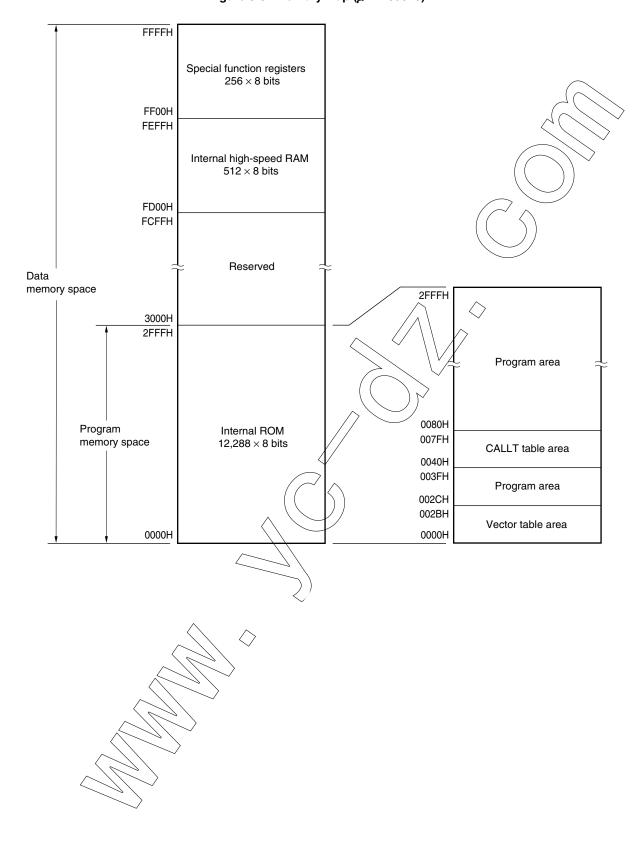


Figure 3-3. Memory Map (μPD789025)

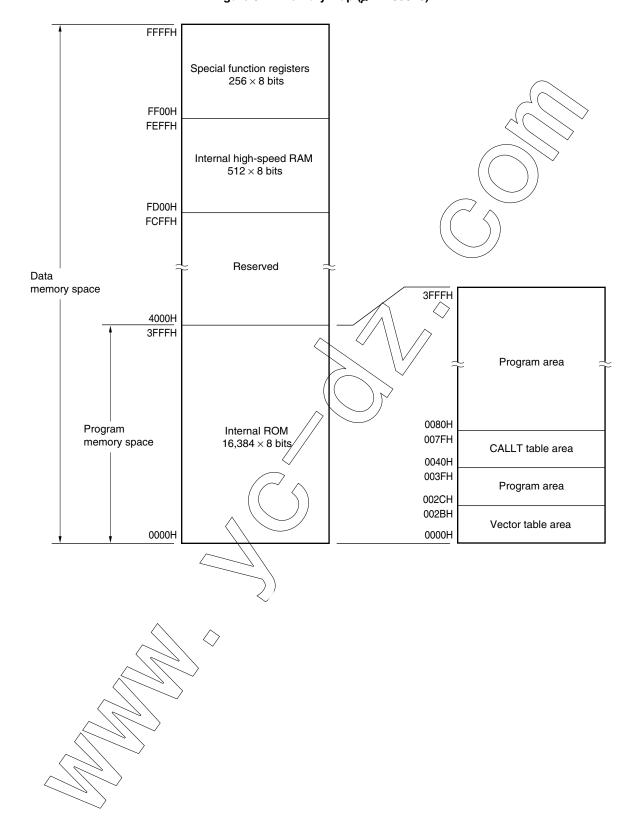


Figure 3-4. Memory Map (μPD789026)

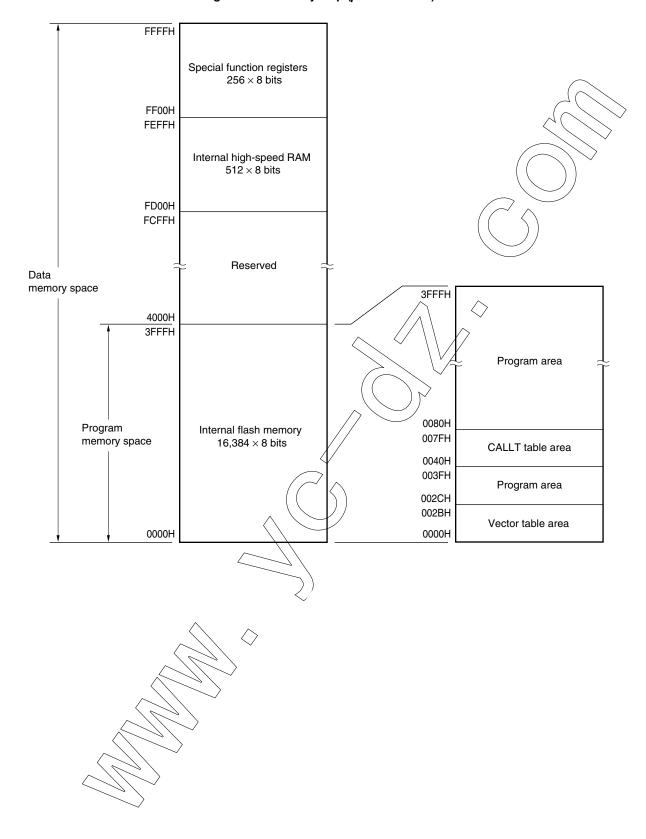


Figure 3-5. Memory Map (μ PD78F9026A)

3.1.1 Internal program memory space

The internal program memory space stores programs and table data. This space is usually addressed by the program counter (PC).

The μ PD789026 Subseries provides internal ROM (or flash memory) with the following capacities for each product.

Table 3-1. Internal ROM Capacity

Part Number	Interna	al ROM
	Structure	Capacity
μPD789022	Mask ROM	4,096 × 8 bits
μPD789024		8,192 × 8 bits
μPD789025		12,288 × 8 bits
μPD789026		16,384 × 8 bits
μPD78F9026A	Flash memory	16,384 × 8 bits

The following areas are allocated to the internal program memory space.

(1) Vector table area

A 44-byte area of addresses 0000H to 002BH is reserved as a vector table area. This area stores program start addresses to be used when branching by FESET input or interrupt request generation. Of a 16-bit program address, the lower 8 bits are stored in an even address, and the higher 8 bits are stored in an odd address.

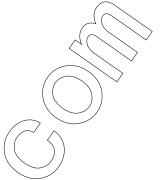
Table 3-2. Vector Table

Vector Table Address	Interrupt Request	Vector Table Address	Interrupt Request
0000H	RESET input	000CH	INTSR/INTCSI0
0004H	INTWDT	000EH	INTST
0006H	INTP0	0010H	INTTM0
0008H	INTP1	0014H	INTTM2
000AH	INTP2	002AH	INTKR

(2) CALLT instruction table area

The subroutine entry address of a 1-byte call instruction (CALLT) can be stored in the 64-byte area of addresses 0040H to 007FH.

3.1.2 Internal data memory (internal high-speed RAM) space

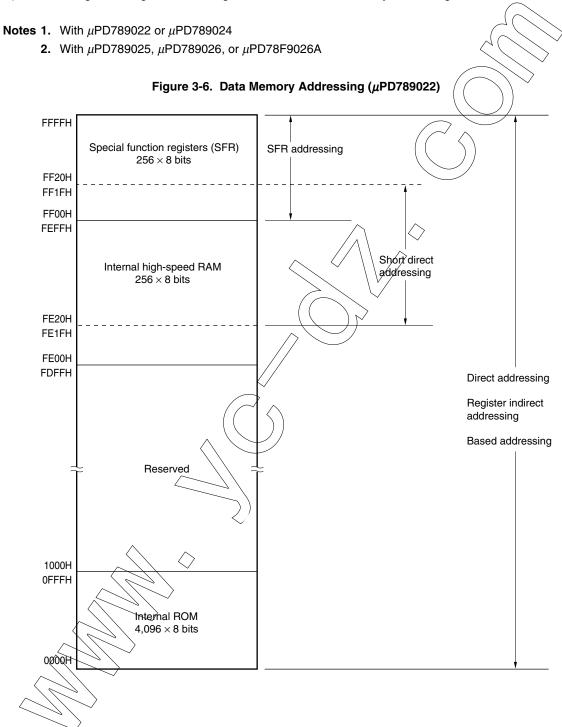

The μ PD789026 Subseries provides internal high-speed RAM with the following capacities for each product.

The internal high-speed RAM cannot be used as a program area for writing and executing instructions.

The internal high-speed RAM can also be used as a stack memory.

Table 3-3. Internal High-Speed RAM Capacity

Part Number	Capacity
μPD789022	256 × 8 bits
μPD789024	
μPD789025	512 × 8 bits
μPD789026	
μPD78F9026A	


3.1.3 Special function register (SFR) area

Special function registers (SFRs) of on-chip peripheral hardware are allocated to an area of FF00H to FFFFH

3.1.4 Data memory addressing

The μ PD789026 Subseries provides a variety of addressing modes which take account of memory manipulability, etc. Especially at addresses corresponding to data memory area (FE00H to FFFFH^{Note 1}, FD00H to FFFFH^{Note 2}), particular addressing modes can be realized to meet the functions of the special function registers (SFR) and other registers. Figures 3-6 through 3-10 show the data memory addressing modes.

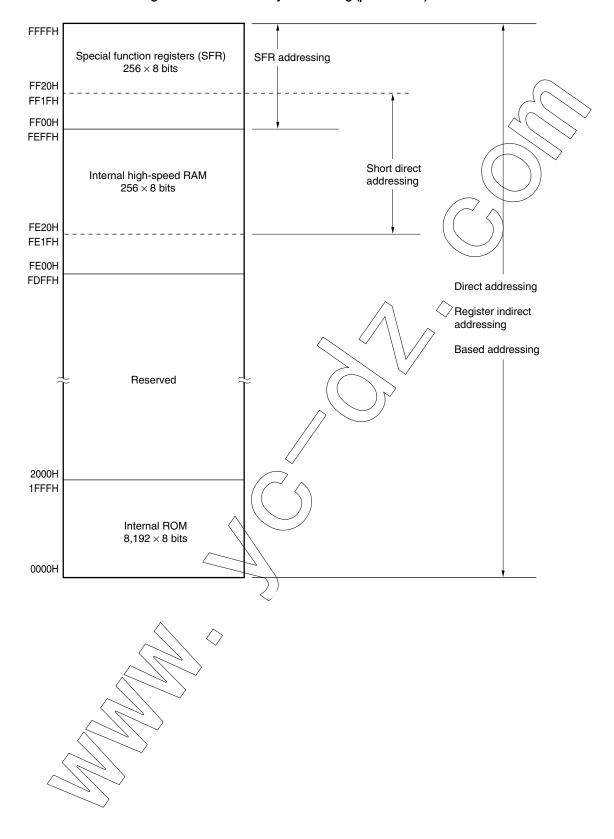


Figure 3-7. Data Memory Addressing (μ PD789024)

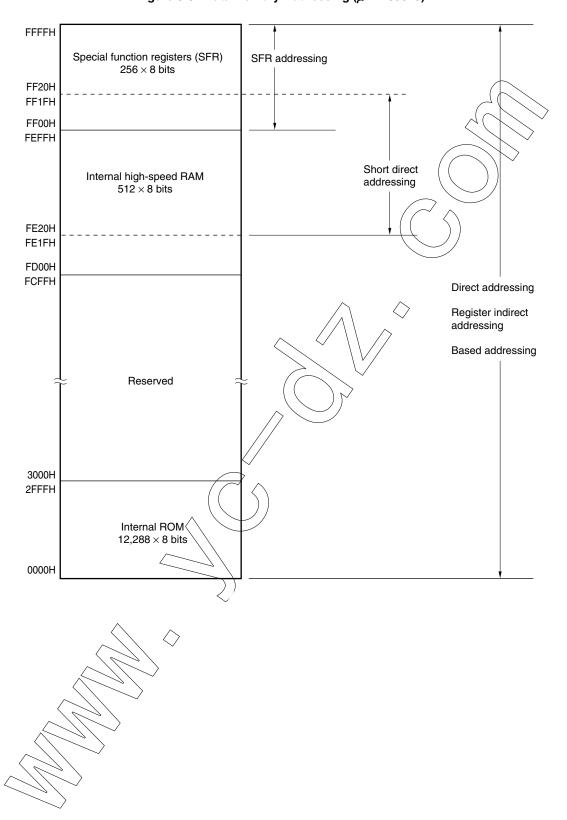


Figure 3-8. Data Memory Addressing (μPD789025)

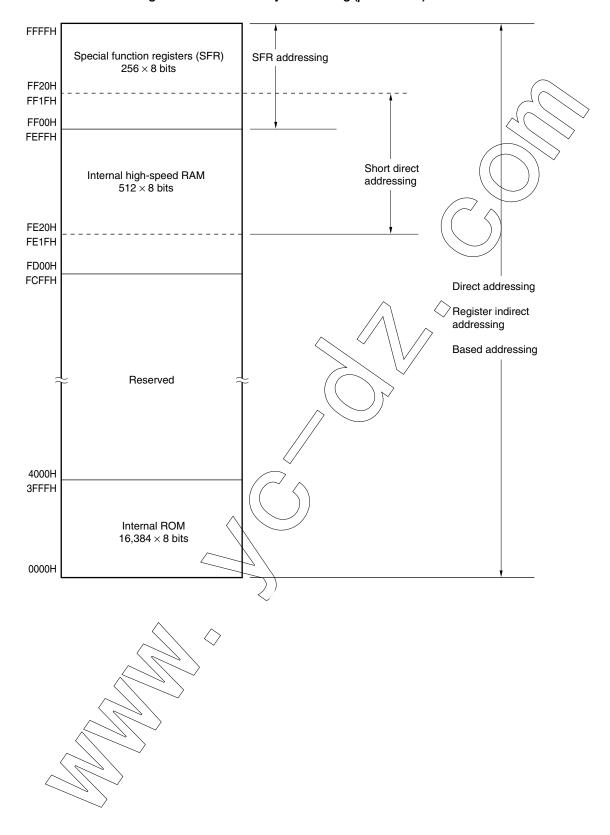


Figure 3-9. Data Memory Addressing (μPD789026)

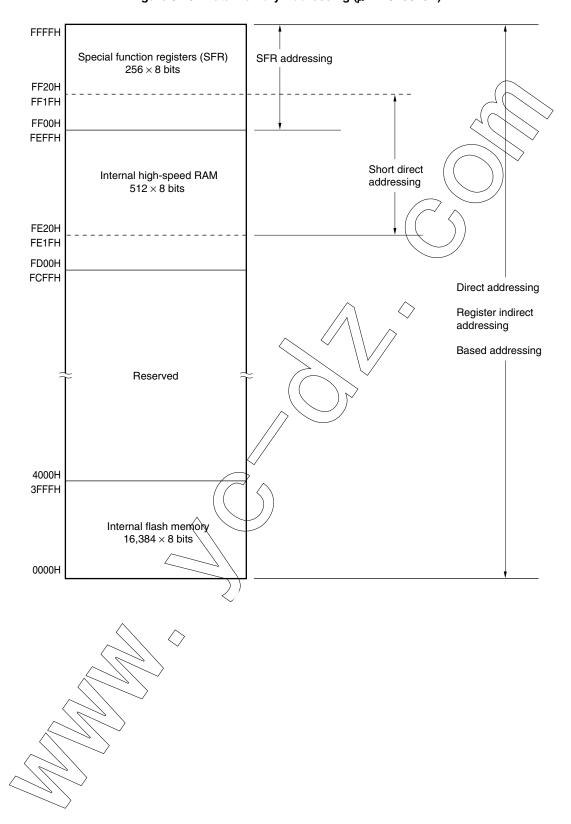


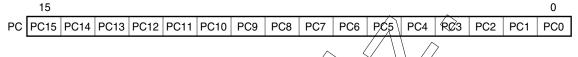
Figure 3-10. Data Memory Addressing (μPD78F9026A)

3.2 Processor Registers

The μ PD789026 Subseries provides the following on-chip processor registers.

3.2.1 Control registers

The control registers have special functions to control the program sequence statuses and stack memory. A program counter, a program status word, and a stack pointer make up the control registers.

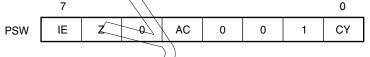

(1) Program counter (PC)

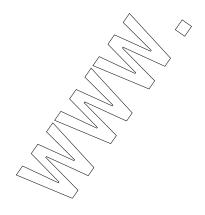
The program counter is a 16-bit register which holds the address information of the next program to be executed.

In normal operation, the PC is automatically incremented according to the number of bytes of the instruction to be fetched. When a branch instruction is executed, immediate data or register contents are set.

RESET input sets the reset vector table values at addresses 0000H and 0001H to the program counter.

Figure 3-11. Program Counter Configuration


(2) Program status word (PSW)


The program status word is an 8-bit register consisting of various flags to be set/reset by instruction execution.

Program status word contents are automatically stacked upon interrupt request generation or PUSH PSW instruction execution and are automatically restored upon execution of the RETI and POP PSW instructions.

RESET input sets the PSW to 02H.

Figure 3-12. Program Status Word Configuration

(a) Interrupt enable flag (IE)

This flag controls interrupt request acknowledgment operations of the CPU.

When IE = 0, the interrupt disabled (DI) status is set. All interrupt requests except non-maskable interrupt are disabled.

When IE = 1, the interrupt enabled (EI) status is set and interrupt request acknowledgment is controlled with an interrupt mask flag for each interrupt source.

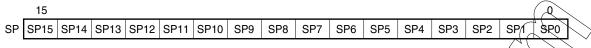
This flag is reset to 0 upon DI instruction execution or interrupt acknowledgment and is set to 1 upon EI instruction execution.

(b) Zero flag (Z)

When the operation result is zero, this flag is set to 1. It is reset to 0 in all other cases

(c) Auxiliary carry flag (AC)

If the operation result has a carry from bit 3 or a borrow at bit 3, this flag is set to 1. It is reset to 0 in all other cases.


(d) Carry flag (CY)

This flag stores overflow and underflow upon add/subtract instruction execution. It stores the shift-out value upon rotate instruction execution and functions as a bit accumulator during bit operation instruction execution.

(3) Stack pointer (SP)

This is a 16-bit register used to hold the start address of the memory stack area. Only the internal high-speed RAM area can be set as the stack area.

Figure 3-13. Stack Pointer Configuration

The SP is decremented ahead of write (save) to the stack memory and is incremented after read (restore) from the stack memory.

Each stack operation saves/restores data as shown in Figures 3-14 and 3-15.

Caution Since RESET input makes the SP contents undefined, be sure to initialize the SP before instruction execution.

Figure 3-14. Data to Be Saved to Stack Memory

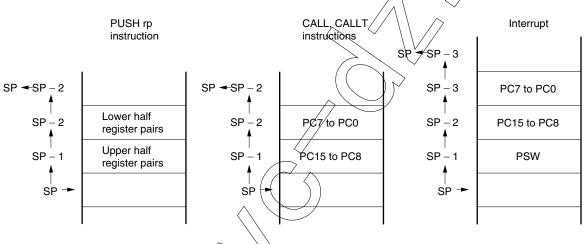
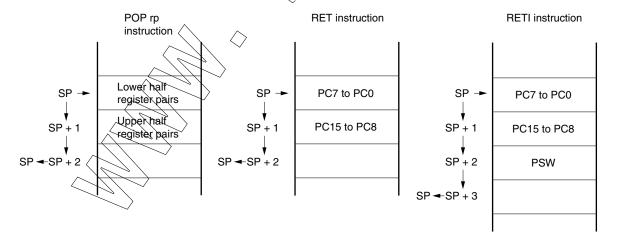



Figure 3-15. Data to Be Restored from Stack Memory

3.2.2 General-purpose registers

The general-purpose registers consist of eight 8-bit registers (X, A, C, B, E, D, L, and H).

Each register can be used as an 8-bit register and two 8-bit registers in pairs can be used as a 16-bit register (AX, BC, DE, and HL).

These registers can be written in terms of functional names (X, A, C, B, E, D, L, H, AX, BC, DE, and HL) and absolute names (R0 to R7 and RP0 to RP3).

Figure 3-16. General-Purpose Register Configuration (a) Absolute names 8-bit processing 16-bit processing R7 RP3 R6 R5 RP2 R4 Ŗ3 RP1 /R2 R1 RP0 R0 15 0 (b) Functional names 16-bit processing 8-bit processing Н HL L D DE Ε В ВС С Α AX Χ 15 0 7 0

3.2.3 Special function registers (SFR)

Unlike a general-purpose register, each special function register has a special function.

Special function registers are allocated in the 256-byte area FF00H to FFFFH.

Special function registers can be manipulated, like general-purpose registers, with operation, transfer, and bit manipulation instructions. The manipulatable bit units (1, 8, and 16) differ depending on the special function register type.

Each manipulation bit unit can be specified as follows.

• 1-bit manipulation

Writes a symbol reserved by the assembler for the 1-bit manipulation instruction operand (str.bit). This manipulation can also be specified using an address.

• 8-bit manipulation

Writes a symbol reserved by assembler for the 8-bit manipulation instruction operand (sfr). This manipulation can also be specified using an address.

• 16-bit manipulation

Writes a symbol reserved by assembler for the 16-bit manipulation instruction operand. When specifying an address, write an even address.

Table 3-4 lists the special function registers. The meanings of the symbols in this table are as follows.

• Symbol

Indicates the addresses of the incorporated special function registers. The symbols shown in this column are the reserved words of the assembler, and have already been defined in the header file "sfrbit.h" in the C compiler. Therefore, these symbols can be used as instruction operands if an assembler or integrated debugger is used.

R/W

Indicates whether the special function register cap be read or written.

R/W: Read/write
R: Read only
W: Write only

• Bit units for manipulation

Indicates the bit units (1, 8, and 16) in which the special function register can be manipulated.

· After reset

Indicates the status of the special function register when the RESET signal is input.

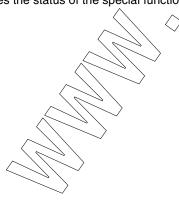
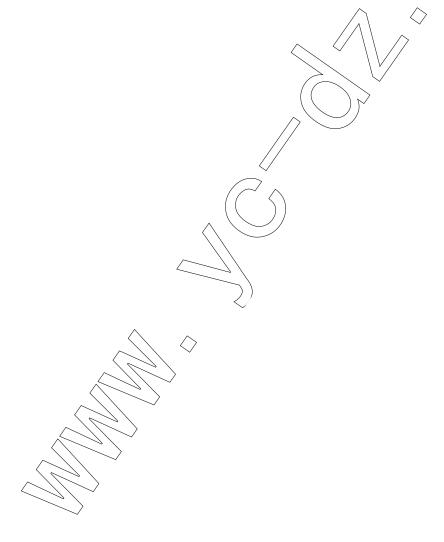


Table 3-4. Special Function Registers (1/2)


Address	Special Function Register (SFR) Name	Sym	nbol	R/W	Bit Un	its for Manipul	ation	After Reset
					1 Bit	8 Bits	16 Bits	
FF00H	Port 0	P0		R/W	V	$\sqrt{}$	-	00H
FF01H	Port 1	P1			V	√		
FF02H	Port 2	P2			V	√	<u></u>	
FF03H	Port 3	P3			V	√ <	(-)	
FF04H	Port 4	P4			V	1/		
FF05H	Port 5	P5			√	1))-	
FF10H	Transmit shift register 00	TXS00	SIO00	W	_		<i>/</i> -	FFH
	Receive buffer register 00	RXB00		R	- (_	Undefined
FF16H	16-bit compare register 20	CR20		W	-	Note 1	√Note 2	FFFFH
FF17H								
FF18H	16-bit timer counter 20	TM20		R	=	√Note 1	√Note 2	0000H
FF19H					$\langle \rangle$			
FF1AH	16-bit capture register 20	TCP20	^		/\-/>	√Note 1	√Note 2	Undefined
FF1BH				_`				
FF20H	Port mode register 0	PM0		R/W	4	√	_	FFH
FF21H	Port mode register 1	PM1) > 1	$\sqrt{}$	_	
FF22H	Port mode register 2	PM2			1	√	_	
FF23H	Port mode register 3	РМ3 /			V	√	_	
FF24H	Port mode register 4	PM4			√	√	_	
FF25H	Port mode register 5	PM5 /	$\overline{\ \ }$		V	√	_	
FF42H	Timer clock select register 2	TCL2))		_	√	_	00H
FF50H	8-bit compare register 00	CR00	/	W	_	√	_	Undefined
FF51H	8-bit timer counter 00	TM00		R	_	√	_	00H
FF53H	8-bit timer mode control register 00	TMC00		R/W	√	√	_	
FF5BH	16-bit timer mode control register 20	TMC20			V	√	_	
FF70H	Asynchronous serial interface mode register 00	ASIM00)		√	V	_	
FF71H	Asynchronous serial interface status register 00	ASIS00	1	R	√	V	_	
FF72H	Serial operation mode register 00	CSIM00)	R/W	√	√	_	
FF73H	Baud rate generator control register 00	BRGC0	0		-	√	_	

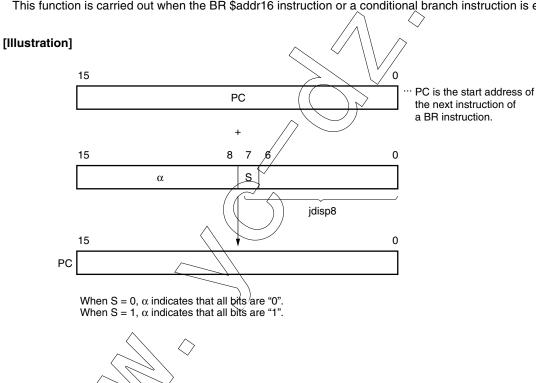
Notes 1 CR20, TM20, and TCP20 are designed for 16-bit access, but they can also be accessed in 8-bit mode. In 8-bit access mode, use direct addressing.

^{2. 16-}bit access is allowed only with short direct addressing.

Table 3-4. Special Function Registers (2/2)

Address	Special Function Register (SFR) Name	Symbol	R/W	Bit Units for Manipulation			After Reset
				1 Bit	8 Bits	16 Bits	
FFE0H	Interrupt request flag register 0	IF0	R/W	√	√	-	00H
FFE1H	Interrupt request flag register 1	IF1		$\sqrt{}$	√	- (
FFE4H	Interrupt mask flag register 0	MK0		√	√	(FFH
FFE5H	Interrupt mask flag register 1	MK1		√	√	-	
FFECH	External interrupt mode register 0	INTM0		-	√		N90
FFF5H	Key return mode register 00	KRM00		√	√)
FFF7H	Pull-up resistor option register	PUO		√	1		
FFF9H	Watchdog timer mode register	WDTM		√	V((<u></u>	
FFFAH	Oscillation stabilization time select register	OSTS		-	1	<u> </u>	04H
FFFBH	Processor clock control register	PCC		$\sqrt{}$	V	_	02H

3.3 Instruction Address Addressing


An instruction address is determined by program counter (PC) contents. PC contents are normally incremented (+1 for each byte) automatically according to the number of bytes of an instruction to be fetched each time another instruction is executed. When a branch instruction is executed, the branch destination information is set to the PC and branched by the following addressing (for details of each instruction, refer to 78K/0S Series Instructions User's Manual (U11047E)).

3.3.1 Relative addressing

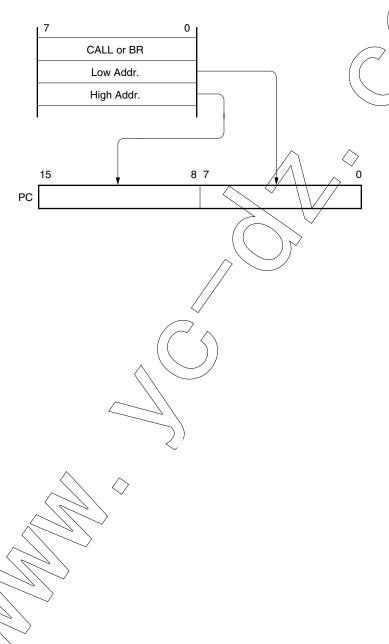
[Function]

The value obtained by adding 8-bit immediate data (displacement value: jdjsp8) of an-instruction code to the start address of the following instruction is transferred to the program counter (RC) and branched. The displacement value is treated as signed two's complement data (-128 to +127) and bit 7 becomes a sign bit. In other words, the range of branch in relative addressing is between -128 and +127 of the start address of the following instruction.

This function is carried out when the BR \$addr16 instruction or a conditional branch instruction is executed.

3.3.2 Immediate addressing

[Function]

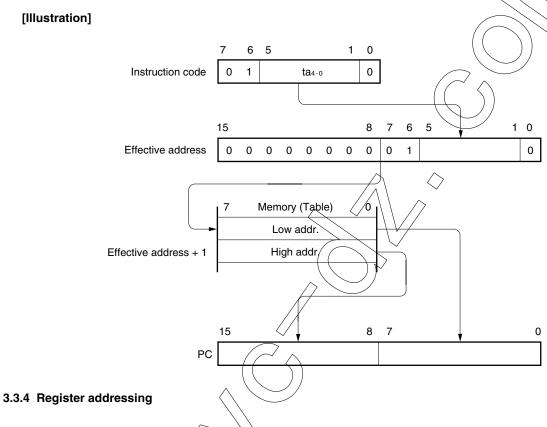

Immediate data in the instruction word is transferred to the program counter (PC) and branched.

This function is carried out when the CALL !addr16 or BR !addr16 instruction is executed.

CALL !addr16 and BR !addr16 instructions can branch to all the memory spaces.

[Illustration]

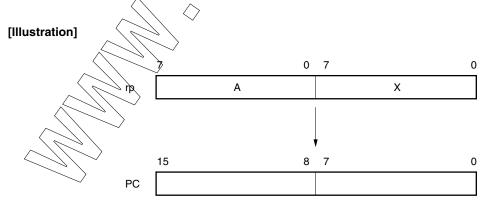
In case of CALL !addr16 or BR !addr16 instruction



3.3.3 Table indirect addressing

[Function]

Table contents (branch destination address) of the particular location to be addressed by the immediate data of an instruction code from bit 1 to bit 5 are transferred to the program counter (PC) and branched.


Table indirect addressing is carried out when the CALLT [addr5] instruction is executed. This instruction can reference the address stored in the memory table 40H to 7FH and branch to all the memory spaces.

[Function]

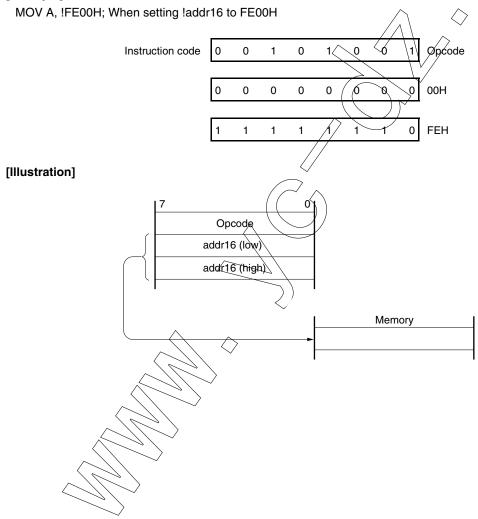
Register pair (AX) contents to be specified with an instruction word are transferred to the program counter (PC) and branched.

This function is carried out when the BR AX instruction is executed.

3.4 Operand Address Addressing

The following methods are available to specify the register and memory (addressing) which undergo manipulation during instruction execution.

3.4.1 Direct addressing


[Function]

The memory indicated by immediate data in an instruction word is directly addressed.

[Operand format]

Identifier	Description	///	<	
addr16	Label or 16-bit immediate data	/		

[Example]

3.4.2 Short direct addressing

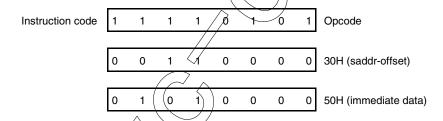
[Function]

The memory to be manipulated in the fixed space is directly addressed with 8-bit data in an instruction word.

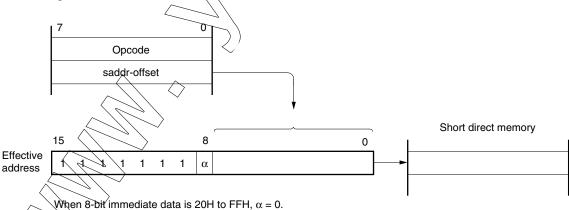
The fixed space to which this addressing is applied is the 256-byte space FE20H to FF1FH. An internal high-speed RAM and special function registers (SFR) are mapped at FE20H to FEFFH and FE00H to FF1FH, respectively.

The SFR area (FF00H to FF1FH) where short direct addressing is applied is a part of the total SFR areas. In this area, ports which are frequently accessed in a program and a compare register of the timer/event counter are mapped, and these SFRs can be manipulated with a small number of bytes and clocks.

When 8-bit immediate data is at 20H to FFH, bit 8 of an effective address is set to 0. When it is at 00H to 1FH, bit 8 is set to 1. See [Illustration].


[Operand format]

Identifier	Description
saddr	Label or FE20H to FF1FH immediate data
saddrp	Label or FE20H to FF1FH immediate data (even/address only)


[Example]

MOV FE30H, #50H; When setting saddr to FE30H and the immediate data to 50H

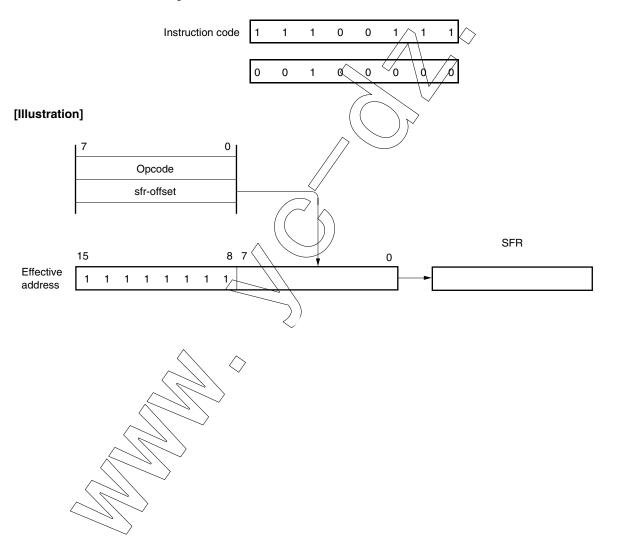
When 8-bit immediate data is 00H to 1FH, $\alpha = 1$.

[Illustration]

3.4.3 Special function register (SFR) addressing

[Function]

A memory-mapped special function register (SFR) is addressed with 8-bit immediate data in an instruction word.


This addressing is applied to the 240-byte spaces FF00H to FFCFH and FFE0H to FFFFH. However, the SFRs mapped at FF00H to FF1FH can also be accessed with short direct addressing.

[Operand format]

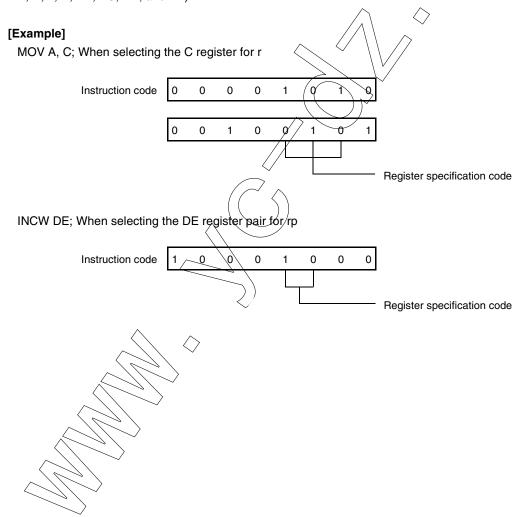
Identifier	Description			
sfr	Special function register name	\bigcap	$\frac{1}{2}$	

[Example]

MOV PM0, A; When selecting PM0 for sfr

3.4.4 Register addressing

[Function]


A general-purpose register is accessed as an operand. The general-purpose register to be accessed is specified by the register specification code and functional name in the instruction code.

Register addressing is carried out when an instruction with the following operand format is executed. When an 8-bit register is specified, one of the eight registers is specified with 3 bits in the instruction code.

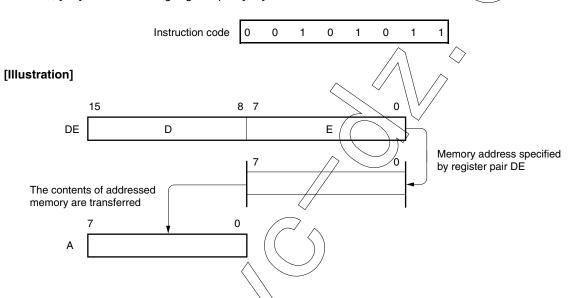
[Operand format]

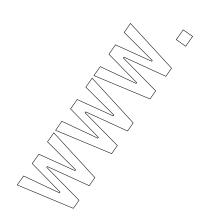
Identifier	Description
r	X, A, C, B, E, D, L, H
rp	AX, BC, DE, HL

r and rp can be written with absolute names (R0 to R7 and RP0 to RP3) as well as function names (X, A, C, B, E, D, L, H, AX, BC, DE, and HL).

3.4.5 Register indirect addressing

[Function]


The memory is addressed with the contents of the register pair specified as an operand. The register pair to be accessed is specified with the register pair specification code in the instruction code. This addressing can be carried out for all the memory spaces.


[Operand format]

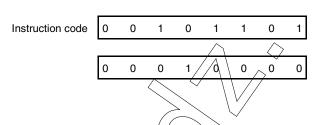
Identifier	Description		/	
_	[DE], [HL]			1

[Example]

MOV A, [DE]; When selecting register pair [DE]

3.4.6 Based addressing

[Function]


8-bit immediate data is added to the contents of the base register, that is, the HL register pair, and the sum is used to address the memory. Addition is performed by expanding the offset data as a positive number to 16 bits. A carry from the 16th bit is ignored. This addressing can be carried out for all the memory spaces.

[Operand format]

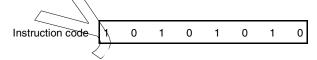
Identifier	Description			$\overline{}$,	
_	[HL+byte]	$\mathcal{I}_{\underline{\beta}}$	\mathcal{I}			

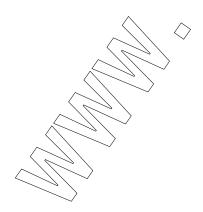
[Example]

MOV A, [HL+10H]; When setting byte to 10H

3.4.7 Stack addressing

[Function]


The stack area is indirectly addressed with the stack pointer (SP) contents.


This addressing method is automatically employed when the PUSH, POP, subroutine call, and return instructions are executed or the register is saved/restored upon generation of an interrupt request.

Stack addressing can be used to access the internal high-speed RAM area only.

[Example]

In the case of PUSH DE

CHAPTER 4 PORT FUNCTIONS

4.1 Functions of Ports

The μ PD789026 Subseries provides the ports shown in Figure 4-1, enabling various methods of control. Alternate functions are provided in addition to the digital I/O port function. For more information on these alternate functions, see **CHAPTER 2 PIN FUNCTIONS**.

Figure 4-1. Port Types P20 P00 P22 Port 0 P30 P32 P07 P40 P10 ∕Port 1 P47 P50 P53

Table 4-1. Port Functions

Pin Name	I/O	Function	After Reset	Alternate Function
P00 to P07	I/O	Port 0 8-bit I/O port Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can be specified by setting the pull-up resistor option register (PUO). LEDs can be driven directly.	Input	-
P10 to P17	I/O	Port 1 8-bit I/O port Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can be specified by setting the pull-up resistor option register (PUO) LEDs can be driven directly.	Input	_
P20	I/O	Port 2	Input	SCK0/ASCK
P21		3-bit I/O port Input/output can be specified in 1-bit units.		SO0/TxD
P22		When used as an input port, use of an on-chip pull-up resistor can be specified by setting the pull-up resistor option register (PUO). LEDs can be driven directly.		SI0/RxD
P30	I/O	Port 3	Input	INTP0
P31		3-bit I/O port Input/output can be specified in 1-bit/units.		INTP1
P32		When used as an input port, use of an on-chip pull-up resistor can be specified by setting the pull-up resistor option register (PUO). LEDs can be driven directly.		INTP2/CPT2
P40 to P47	I/O	Port 4 8-bit I/O port Input/output can be specified in 1-bit units. When used as an input port, use of an on-chip pull-up resistor can be specified by setting the pull-up resistor option register (PUO). LEDs can be driven directly.	Input	KR0 to KR7
P50	I/O	Port 5	Input	TI0/TO0
P51	4-bit I/O port Input/output can be specified in 1-bit units.			TO2
P52, P53		When used as an input port, use of an on-chip pull-up resistor can be specified by setting the pull-up resistor option register (PUO). LEDs can be driven directly.		-

4.2 Port Configuration

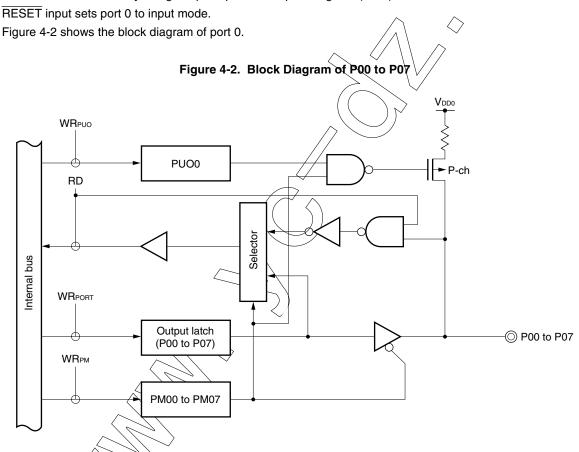
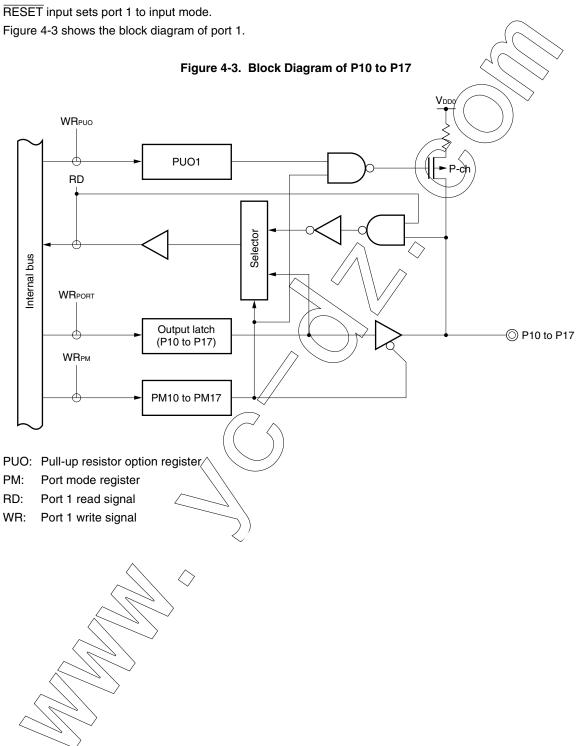

Ports consist of the following hardware.

Table 4-2. Port Configuration

Item	Configuration	
Control registers	Port mode register (PMm: m = 0 to 5) Pull-up resistor option register (PUO)	
Ports	Total: 34 (I/O: 34)	
Pull-up resistors	Total: 34 (on-chip pull-up resistors can be connected by software)	

4.2.1 Port 0

This is an 8-bit I/O port with an output latch. Port 0 can be specified in the input or output mode in 1-bit units by using port mode register 0 (PM0). When using the P00 to P07 pins as input port pins, on-chip pull-up resistors can be connected in 8-bit units by using the pull-up resistor option register (PUO).



PUO: Pull-up resistor option register

PM: Port mode register
RD: Port 0 read signal
WR: Port 0 write-signal

4.2.2 Port 1

This is an 8-bit I/O port with an output latch. Port 1 can be specified in the input or output mode in 1-bit units by using port mode register 1 (PM1). When using the P10 to P17 pins as input port pins, on-chip pull-up resistors can be connected in 8-bit units by using the pull-up resistor option register (PUO).

4.2.3 Port 2

This is a 3-bit I/O port with an output latch. Port 2 can be specified in the input or output mode in 1-bit units by using port mode register 2 (PM2). When using the P20 to P22 pins as input port pins, on-chip pull-up resistors can be connected in 3-bit units by using the pull-up resistor option register (PUO).

The pins of this port are also used as the data I/O and clock I/O pins of the serial interface.

RESET input sets port 2 to input mode.

Figures 4-4 through 4-6 show the block diagrams of port 2.

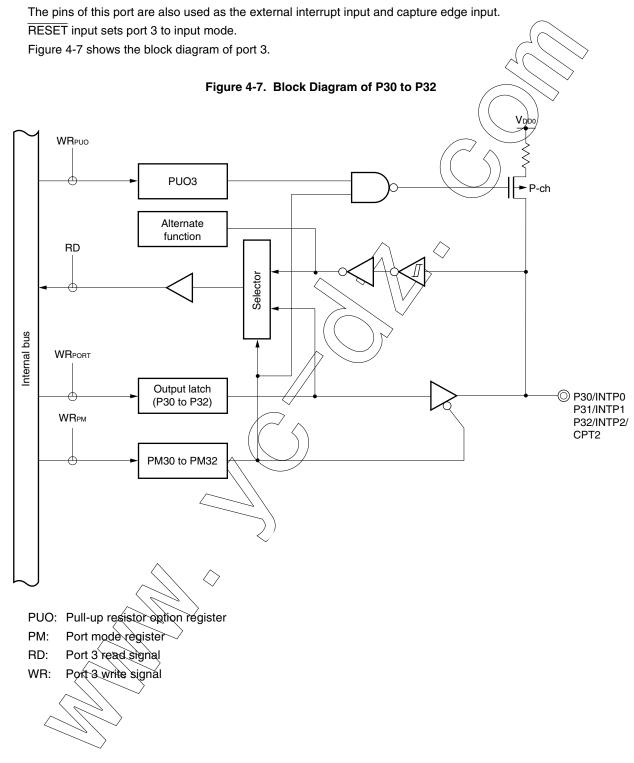
Caution When using the pins of port 2 as the serial interface, the I/O mode and output latch must be set according to the function to be used. For details of the settings, see Table 9-2 Operating Mode Settings of Serial Interface 00.

Figure 4-4. Block Diagram of P20 **WR**_{PUO} PUO₂ Alternate function RD Selector Internal bus WRPORT Output latch O P20/ASCK/SCK0 (P20) **WR**PM PM20 Alternate function

PUO: Pull-up resistor option register

PM: Port mode register
RD: Port 2 read signal
WR: Port 2 write signal

WRpuo PUO2 RD Selector Internal bus WRPORT Output latch (P21) - P21/TxD/SO0 WR_{PM} PM21 Alternate function PUO: Pull-up resistor option register Port mode register PM: RD: Port 2 read signal WR: Port 2 write signal


Figure 4-5. Block Diagram of P21

WRpuo PUO2 Alternate function RD Selector Internal bus WRPORT Output latch (P22) P22/RxD/SI0 WR_{PM} PM22 PUO: Pull-up resistor option register PM: Port mode register Port 2 read signal RD: WR: Port 2 write signal

Figure 4-6. Block Diagram of P22

4.2.4 Port 3

This is a 3-bit I/O port with an output latch. Port 3 can be specified in input or output mode in 1-bit units by using port mode register 3 (PM3). When using the P30 to P32 pins as input port pins, on-chip pull-up resistors can be connected in 3-bit units by using the pull-up resistor option register (PUO).

4.2.5 Port 4

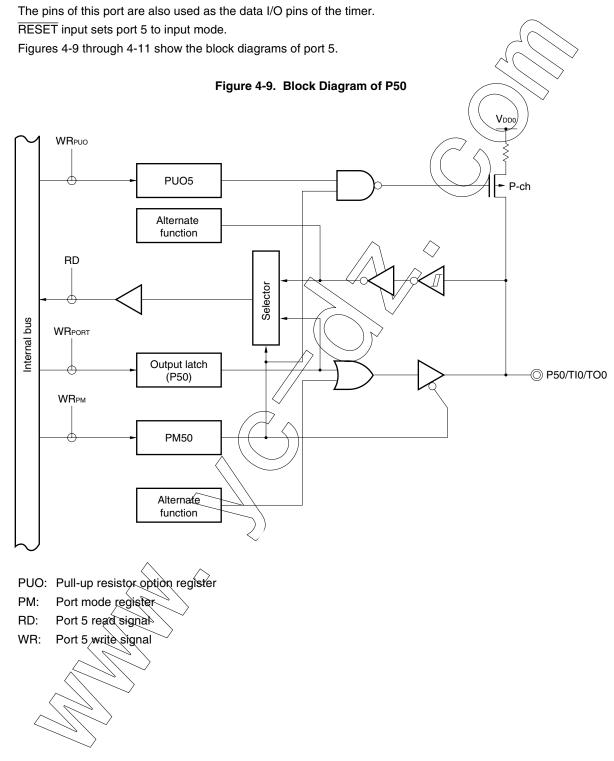
This is an 8-bit I/O port with an output latch. Port 4 can be specified in the input or output mode in 1-bit units by using port mode register 4 (PM4). When using the P40 to P47 pins as input port pins, on-chip pull-up resistors can be connected in 8-bit units by using the pull-up resistor option register (PUO).

The pins of this port are also used as the key return input.

RESET input sets port 4 to input mode.

Figure 4-8 shows the block diagram of port 4.

Caution When using port 4 for the key return function, it is necessary to set key return mode register 00. For details of the settings, see 10.3 (5) Key return mode register 00 (KRM00).


Figure 4-8. Block Diagram of P40 to P47 **WR**_{PUO} PUO4 RD Selector WR_{KRM00} KRM000 to KRM007 nternal bus WRPORT Output latch P40/KR0 to (P40 to P47) P47/KR7 WR_{PM} PM40 to PM47 Alternate function

KRM00: Key return mode register 00
PUO: Pull-up resistor option register

PM: Port mode register
RD: Port 4 read signal
WR: Port 4 write signal

4.2.6 Port 5

This is a 4-bit I/O port with an output latch. Port 5 can be specified in the input or output mode in 1-bit units by using port mode register 5 (PM5). When using the P50 to P53 pins as input port pins, on-chip pull-up resistors can be connected in 4-bit units by using the pull-up resistor option register (PUO).

 V_{DD0} WRpuo PUO5 P-ch RD Selector Internal bus WRPORT Output latch (P51) ⊕ P51/TO2 WR_{PM} PM51 Alternate function PUO: Pull-up resistor option register PM: Port mode register Port 5 read signal RD: WR: Port 5 write signal

Figure 4-10. Block Diagram of P51

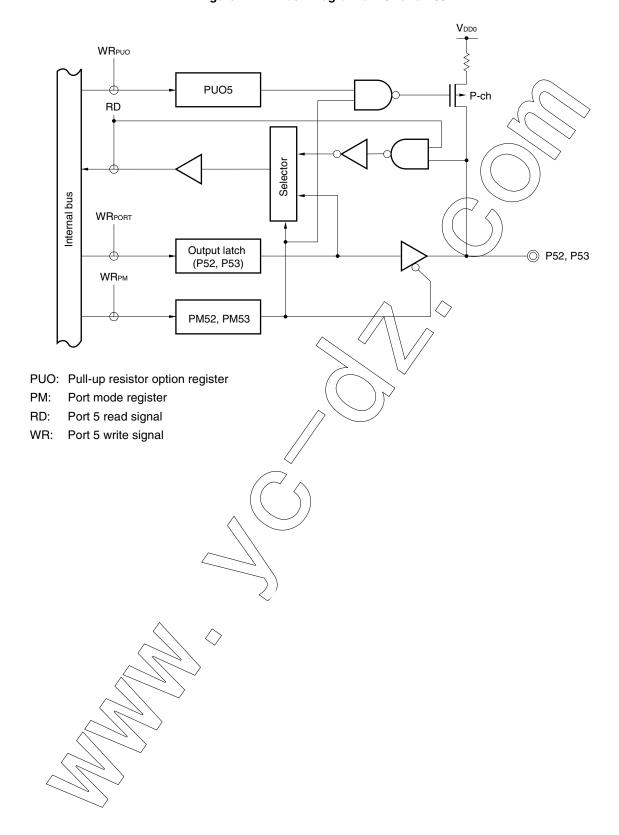


Figure 4-11. Block Diagram of P52 and P53

4.3 Registers Controlling Port Function

The following two types of registers control the ports.

- Port mode registers (PM0 to PM5)
- Pull-up resistor option register (PUO)

(1) Port mode registers (PM0 to PM5)

These registers are used to set port input/output in 1-bit units.

Port mode registers are independently set with a 1-bit or 8-bit memory manipulation instruction.

RESET input sets these registers to FFH.

When port pins are used as alternate-function pins, set the port mode register and output latch according to Table 4-3.

Caution As port 3 has an alternate function as the external interrupt input, when the port function output mode is specified and the output level is changed, the interrupt request flag is set.

When the output mode is used, therefore, the interrupt mask flag should be set to 1 beforehand.

Table 4-3. Port Mode Register and Output Latch Settings When Using Alternate Functions

Pin Name	Alternate Function		PM××	Pxx
	Name	1/0		
P30	INTP0	Input	1	×
P31	INTP1	Imput	1	×
P32	INTP2	Input	1	×
	CPT2	Input	1	×
P40 to P47 ^{Note}	KR0 to KR7	Input	1	×
P50	TIO	Input	1	×
	T00	Output	0	0
P51	TO2	Output	0	0

Note When an alternate function is used, set key return mode register 00 (KRM00) to 1 (see 10.3 (5) Key return mode register 00 (KRM00)).

Caution When port 2 is used as serial interface pins, the I/O mode and output latch must be set according to the function to be used. For details of the settings, see Table 9-2 Operating Mode Settings of Serial Interface 00.

Remark

Don't care

PMXX: Port mode register

Output latch of port

Figure 4-12. Format of Port Mode Register

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PM0	PM07	PM06	PM05	PM04	PM03	PM02	PM01	PM00	FF20H	FFH	R/W
								_			
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FF21H	FEH	R/W
		I				l			~		
PM2	1	1	1	1	1	PM22	PM21	PM20	FF22H	EFH	R/W
1 1412	'	'		•	•	I IVIZZ	1 1012 1	1 IVIZO	112211		11/ **
		I	<u> </u>			I	I		((
PM3	1	1	1	1	1	PM32	PM31	PM30	FF23H	// FFH	R/W
									$^{\prime}$ $^{\wedge}$		
PM4	PM47	PM46	PM45	PM44	PM43	PM42	PM41	PM40	FF24H	FFH	R/W
PM5	1	1	1	1	PM53	PM52	PM51	PM50	FF25H	FFH	R/W
	DM	I			D.	nn nin I/O r	møde\selec	tion			
	PMmn						1: n = 0 to 7				
						m = 2, 3: m = 5:	n = 0 to 2 n = 0 to 3	/			
	0	Output m	ode (outnu	t buffer on)		111 = 5.	11 = 0 10 9	/)			
	1		de (output b	,		-(-	$\rightarrow \nearrow$				
	ı	Input mod	ie (output t	ouner on)		\rightarrow	//				
					/	// -					
(2)	•	resistor o		•	• //						
	=	-up resist	or option	register (F	OO) sets	whether	an on-chi	p pull-up r	esistor is	used on each	n port or
	not.		::!	10 4[٠					II
		•	•	/		,				an be interna	•
	-			. ()			=			bits set in th	-
				-)O. On-cr	ութ բաու-աբ	resisiors	carriot D	e useu WN	en the pins a	ne usea
	as the alternate-function output pins										

Address

PUO1 PUO0 FFF7H

After reset

00H

R/W

R/W

PUO is set with a 1-bit or 8-bit memory manipulation instruction.

PUO4

RESET input clears PUO to 00H.

Symbol

Figure 4-13. Format of Pull-Up Resistor Option Register

PUO3 PUO2

PUO		Port m on-chip pull-up resistor selection (m = 0 to 5)	
Q	Qn-chip pull-up resistor not used		
	On-chip pull-up resistor used		

4.4 Operation of Port Functions

The operation of a port differs depending on whether the port is set in the input or output mode, as described below.

4.4.1 Writing to I/O port

(1) In output mode

A value can be written to the output latch by using a transfer instruction. The contents of the output latch can be output from the pins of the port.

Once data is written to the output latch, it is retained until new data is written to the output latch.

(2) In input mode

A value can be written to the output latch by using a transfer instruction. However, the status of the port pin is not changed because the output buffer is OFF.

Once data is written to the output latch, it is retained until new data is written to the output latch.

Caution A 1-bit memory manipulation instruction is executed to manipulate 1 bit of a port. However, this instruction accesses the port in 8-bit units. When this instruction is executed to manipulate a bit of a port consisting both of inputs and outputs, therefore, the contents of the output latch of the pin that is set in the input mode and not subject to manipulation become undefined.

4.4.2 Reading from I/O port

(1) In output mode

The contents of an output latch can be read by using a transfer instruction. The contents of the output latch are not changed.

(2) In input mode

The status of a pin can be read by using a transfer instruction. The contents of the output latch are not changed.

4.4.3 Arithmetic operation of I/O port

(1) In output mode

An arithmetic operation can be performed on the contents of an output latch. The result of the operation is written to the output latch. The contents of the output latch are output from the port pins.

Once data is written to the output latch, it is retained until new data is written to the output latch.

(2) In input mode

The contents of the output latch become undefined. However, the status of the pin is not changed because the output buffer is OFF.

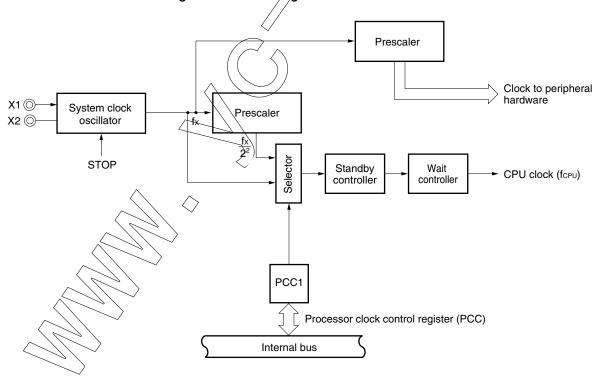
Caution A t-bit memory manipulation instruction is executed to manipulate 1 bit of a port. However, this instruction accesses the port in 8-bit units. When this instruction is executed to manipulate a bit of a port consisting both of inputs and outputs, therefore, the contents of the output latch of the pin that is set in the input mode and not subject to manipulation become undefined.

CHAPTER 5 CLOCK GENERATOR

5.1 Function of Clock Generator

The clock generator generates the clock to be supplied to the CPU and peripheral hardware. The following type of system clock oscillator is used.

System clock oscillator
 This circuit oscillates at frequencies of 1.0 to 5.0 MHz. Oscillation can be stopped by executing the STOP instruction.


5.2 Configuration of Clock Generator

The clock generator consists of the following hardware.

Table 5-1. Configuration of Clock Generator

Item	Configuration
Control register	Processor clock control register (PCC)
Oscillator	System clock oscillator

Figure 5-1. Block Diagram of Clock Generator

5.3 Register Controlling Clock Generator

The clock generator is controlled by the following register.

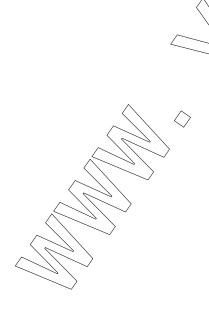
• Processor clock control register (PCC)

(1) Processor clock control register (PCC)

PCC sets CPU clock selection and the division ratio.

PCC is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PCC to 02H.


Figure 5-2. Format of Processor Clock Control Register

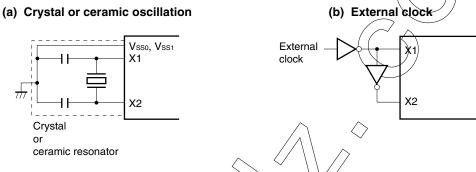
Symbol	7	6	5	4	3	2	1	0	Address After reset	R/W
PCC	0	0	0	0	0	0	PCC1	0	FFFBH 02H	R/W

PCC1	CPU clock (fcPu) selection	Minimum instruction execution time: 2/fcpu
0	fx	0.4 μs
1	fx/2 ²	1.6 μs

Caution Be sure to set bits 0 and 2 to 7 to 0.

Remark fx: System clock oscillation frequency

5.4 System Clock Oscillator


5.4.1 System clock oscillator

The system clock oscillator is oscillated by the crystal or ceramic resonator (5.0 MHz TYP.) connected across the X1 and X2 pins.

An external clock can also be input to the circuit. In this case, input the clock signal to the X1 pin, and input the inverted signal to the X2 pin.

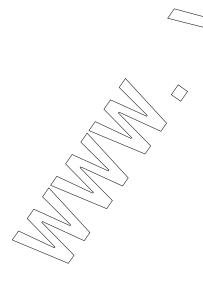

Figure 5-3 shows the external circuit of the system clock oscillator.

Figure 5-3. External Circuit of System Clock Oscillator

Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines in Figure 5-3 to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

5.4.2 Examples of incorrect resonator connection

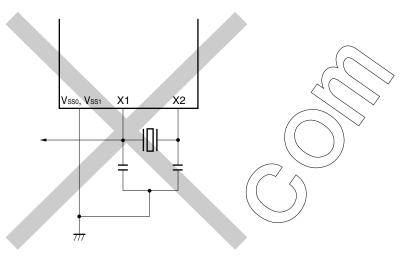
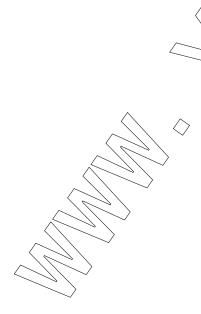
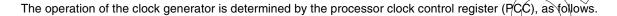

Figure 5-4 shows examples of incorrect resonator connection.

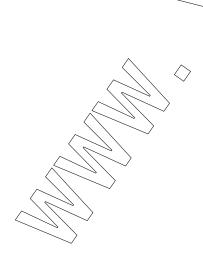
Figure 5-4. Examples of Incorrect Resonator Connection (1/2)


Figure 5-4. Examples of Incorrect Resonator Connection (2/2)

(e) Signal is fetched

5.4.3 Divider circuit


The divider circuit divides the output of the system clock oscillator (fx) to generate various clocks.


5.5 Operation of Clock Generator

The clock generator generates the following clocks and controls the operation modes of the CPU, such as the standby mode.

- System clock fx
- CPU clock fcpu
- · Clock to peripheral hardware

- (a) The slow mode (1.6 μ s: at 5.0 MHz operation) of the system clock is selected when the \overline{RESET} signal is generated (PCC = 02H). While a low level is being input to the \overline{RESET} pin, oscillation of the system clock is stopped.
- (b) Two types of minimum instruction execution time (0.4 μ s and 1.6 μ s: at 5.0 MHz operation) can be selected by the PCC setting.
- (c) Two standby modes, STOP and HALT, can be used.
- (d) The clock to the peripheral hardware is supplied by dividing the system clock. The other peripheral hardware is stopped when the system clock is stopped (except) however, the external input clock operation).

5.6 Changing Setting of System Clock and CPU Clock

5.6.1 Time required for switching between system clock and CPU clock

The CPU clock can be selected by using bit 1 (PCC1) of the processor clock control register (PCC).

Actually, the specified clock is not selected immediately after the setting of PCC has been changed; the old clock is used for the duration of several instructions after that (see **Table 5-2**).

Table 5-2. Maximum Time Required for Switching CPU Clock

Set Value Before Switching	Set Value Af	ter Switching
PCC1	PCC1	PCC1
	0	1
0		4 clocks
1	2 clocks	

Remark Two clocks are the minimum instruction execution time of the CPU clock before switching.

5.6.2 Switching CPU clock

The following figure illustrates how the CPU clock switches.

RESET

CPU clock

Slow High-speed operation operation

Figure 5-5. Switching CPU Clock

<1> The CPU is reset when the RESET pin is made low on power application. The effect of resetting is released when the RESET pin is later made high, and the system clock starts oscillating. At this time, the oscillation stabilization time (2¹⁵/fx) is automatically secured.

Internal reset operation

After that, the CPU starts instruction execution at the slow speed of the system clock (1.6 μ s: at 5.0 MHz operation).

Wait (6.55 ms: at 5.0 MHz operation)

<2> After the time during which the VDD voltage rises to the level at which the CPU can operate at the high speed has elapsed, the processor clock control register (PCC) is rewritten so that the high-speed mode can be selected.

CHAPTER 6 16-BIT TIMER 20

6.1 Functions of 16-Bit Timer 20

16-bit timer 20 has the following functions.

- Timer interrupt
- Timer output
- Count value capture

(1) Timer interrupt

An interrupt is generated when the count value and compare value match.

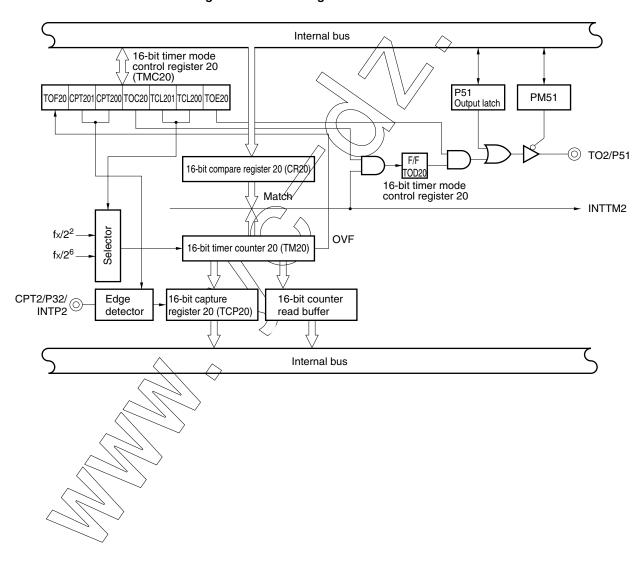
(2) Timer output

Timer output control is possible when the count value and compare value match.

(3) Count value capture

The TM20 count value is latched into a capture register in synchronization with the capture trigger and retained.

86


6.2 Configuration of 16-Bit Timer 20

16-bit timer 20 consists of the following hardware.

Table 6-1. Configuration of 16-Bit Timer 20

Item	Configuration	
Timer counter	16 bits × 1 (TM20)	
Registers	Compare register: 16 bits \times 1 (CR20) Capture register: 16 bits \times 1 (TCP20)	
Timer outputs	1 (TO2)	
Control registers	16-bit timer mode control register 20 (TMC20) Port mode register 5 (PM5)	

Figure 6-1. Block Diagram of 16-Bit Timer 20

(1) 16-bit compare register 20 (CR20)

This register compares the value set to CR20 with the count value of 16-bit timer counter 20 (TM20), and when they match, generates an interrupt request (INTTM2).

CR20 is set with a 16-bit memory manipulation instruction. Values from 0000H to FFFFH can be set. RESET input sets this register to FFFFH.

- Cautions 1. This register is manipulated with a 16-bit memory manipulation instruction; however, an 8-bit memory manipulation instruction can be used. When manipulated with an 8-bit memory manipulation instruction, the accessing method should be direct addressing. This register can be accessed only in short direct addressing mode when a 16-bit memory manipulation instruction is used.
 - When rewriting CR20 during a count operation, set CR20 to interrupt disabled using interrupt mask flag register 1 (MK1) beforehand. Also, set the timer output data to inversion disabled using 16-bit timer mode control register 20 (TMC20).
 If CR20 is rewritten with interrupts enabled, an interrupt request may be issued immediately.

(2) 16-bit timer counter 20 (TM20)

This is a 16-bit register that counts count pulses.

TM20 is read with a 16-bit memory manipulation instruction

This register is in free-running mode during count clock input-

RESET input clears this register to 0000H, after which it enters free-running mode again.

- Cautions 1. The count value after releasing stop becomes undefined because the count operation is executed during the oscillation stabilization time.
 - 2. This register is manipulated with a 16-bit memory manipulation instruction; however, an 8-bit memory manipulation instruction can be used. When manipulated with an 8-bit memory manipulation instruction, the accessing method should be direct addressing. This register can be accessed only in short direct addressing mode when a 16-bit memory manipulation instruction is used.
 - 3. When manipulated with an 8-bit memory manipulation instruction, readout should be performed in order from lower byte to higher byte and must be in pairs.

(3) 16-bit capture register 20 (TCP20)

This is a 16-bit register that captures the contents of 16-bit timer counter 20 (TM20).

TCP20 is set with a 16-bit memory manipulation instruction.

RESET input makes this register undefined.

Caution This register is manipulated with a 16-bit memory manipulation instruction; however, an 8-bit memory manipulation instruction can be used. When manipulated with an 8-bit memory manipulation instruction, the accessing method should be direct addressing. This register can be accessed only in short direct addressing mode when a 16-bit memory manipulation instruction is used.

(4) 16-bit counter read buffer

This buffer latches the counter value and retains the count value of 16-bit timer counter 20 (TM20).

6.3 Registers Controlling 16-Bit Timer 20

The following two registers control 16-bit timer 20 (TM20).

- 16-bit timer mode control register 20 (TMC20)
- Port mode register 5 (PM5)

(1) 16-bit timer mode control register 20 (TMC20)

16-bit timer mode control register 20 (TMC20) controls the setting of the count clock, capture edge, etc.

TMC20 is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input clears TMC20 to 00H.



Figure 6-2. Format of 16-Bit Timer Mode Control Register 20

7 5 <0> Symbol <6> 4 3 2 1 Address After reset R/W TOD20 TMC20 TOF20 CPT201 CPT200 TOC20 TCL201 TCL200 TOE20 FF5BH R/W^{Note} 00H TOD20 Timer output data 0 Timer output data is 0. 1 Timer output data is 1. TOF20 Overflow flag set 0 Clear by reset and software 1 Set by overflow of 16-bit timer CPT201 CPT200 Capture edge selection 0 0 Capture operation disabled 1 0 Rising edge of CPT2 1 0 Falling edge of CPT2 Both edges of CPT2 1 TOC20 Timer output data inversion control 0 Inversion disabled Inversion enabled TCL201 TCL200 16-bit timer counter 20 count clock selection 0 fx/2² (1.25 MHz) 0 1 fx/2⁶ (78.1 kHz) Other than above Setting prohibited TOE20 16-bit timer 20 output control 0 Output disabled (port mode) 1 Output enabled

Note Bit 7 is read-only.

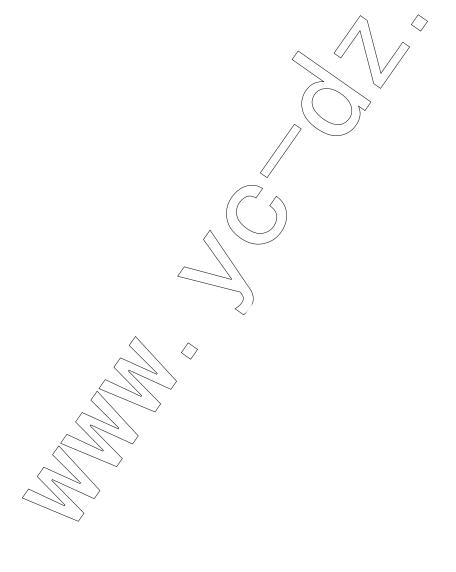
Remarks 1. fx: System clock oscillation frequency

2. The parenthesized values apply to operation at fx = 5.0 MHz.

(2) Port mode register 5 (PM5)

This register sets the input/output of port 5 in 1-bit units.

To use the P51/TO2 pin for timer output, set PM51 and the output latch of P51 to 0.


PM5 is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PM5 to FFH.

Figure 6-3. Format of Port Mode Register 5

Symbol	7	6	5	4	3	2	1	0	Address After reset	R/W
PM5	1	1	1	1	PM53	PM52	PM51	PM50	FF25H FFH	R/W

PM51	P51 pin I/O mode selection	
0	Output mode (output buffer on)	
1	Input mode (output buffer off)	

6.4 Operation of 16-Bit Timer 20

6.4.1 Operation as timer interrupt

★ 16-bit timer 20 can generate interrupts repeatedly each time the free-running counter value reaches the value set to CR20. Since this counter is not cleared and holds the count even after an interrupt is generated, the interval time is equal to one cycle of the count clock set in TCL201 and TCL200.

To operate 16-bit timer 20 as a timer interrupt, the following settings are required.

- · Set count values in CR20
- Set 16-bit timer mode control register 20 (TMC20) as shown in Figure 6-4.

Figure 6-4. Settings of 16-Bit Timer Mode Control Register 20 for Timer Interrupt Operation

	TOD20	TOF20	CPT201	CPT200	TOC20	TCL201	TCL200	TOE20
TMC20	-	0/1	0/1	0/1	0/1	0	0/1	0/1
							_	

Setting of count clock (see Table 6-2)

Caution If both the CPT201 and CPT200 flags are set to 0, the operation of the capture edge is disabled.

When the count value of 16-bit timer counter 20 (TM20) matches the value set to CR20, counting of TM20 continues and an interrupt request signal (INTTM2) is generated.

Table 6-2 shows the interval time, and Figure 6-5 shows the timing of the timer interrupt operation.

Caution Perform the following processing when rewriting CR20 during a count operation.

- <1> Disable interrupts (TMMK20 (bit 7 of interrupt mask flag register 1 (MK1)) = 1).
- <2> Disable inversion control of timer output data (TOC20 = 0).
 If CR20 is rewritten with interrupts enabled, an interrupt request may be generated immediately.

Table 6-2. Interval Time of 16-Bit Timer 20

TCL201	TCL200	Count Clock	Interval Time
0	0	2²/fx (0.8 μs)	2 ¹⁸ /fx (52.4 ms)
0	1 ^	2°/fx (12.8 μs)	2 ²² /fx (838.9 ms)
Other than above		Setting prohibited	

Remarks 1. fx: System clock oscillation frequency

2. The parenthesized values apply to operation at fx = 5.0 MHz.

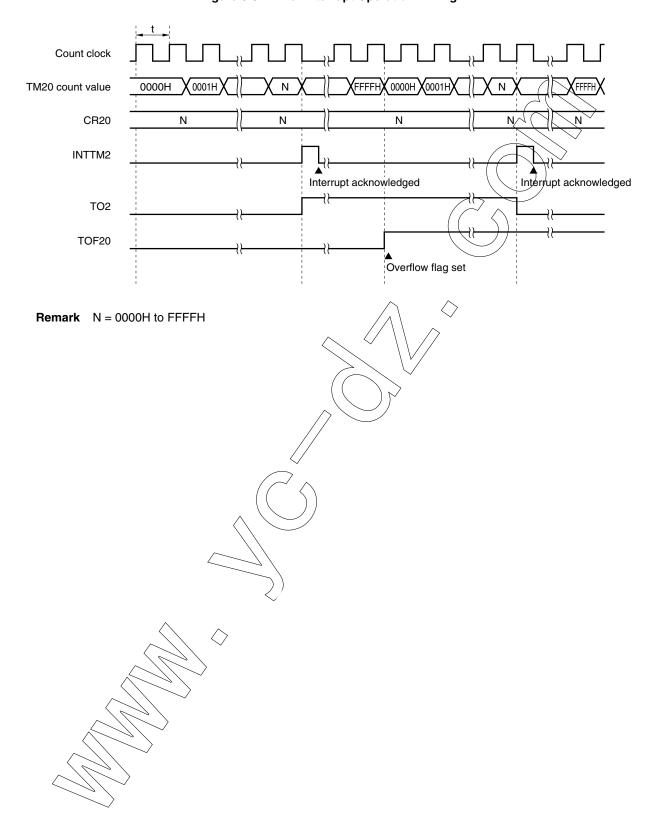
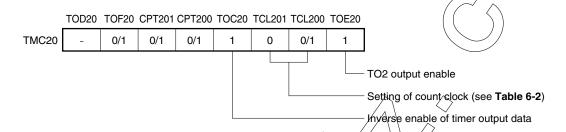


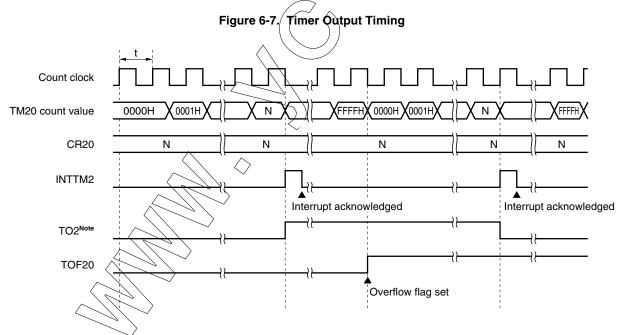
Figure 6-5. Timer Interrupt Operation Timing


6.4.2 Operation as timer output

★ 16-bit timer 20 can invert the timer output repeatedly each time the free-running counter value reaches the value set to CR20. Since this counter is not cleared and holds the count even after the timer output is inverted, the interval time is equal to one cycle of the count clock set in TCL201 and TCL200.

To operate 16-bit timer 20 as a timer output, the following settings are required.

- Set P51 to output mode (PM51 = 0).
- Set 0 to the output latch of P51.
- Set the count value in CR20.
- Set 16-bit timer mode control register 20 (TMC20) as shown in Figure 6-6.

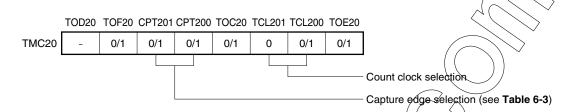

Figure 6-6. Settings of 16-Bit Timer Mode Control Register 20 for Timer Output Operation

Caution If both the CPT201 and CPT200 flags are set to 0, the operation of the capture edge is disabled.

When the count value of 16-bit timer counter 20 (TM20) matches the value set in CR20, the output status of the TO2/P51 pin is inverted. This enables timer output. At that time TM20 counting continues and an interrupt request signal (INTTM2) is generated.

Figure 6-7 shows the timing of timer output (see Table 6-2 for the interval time of the 16-bit timer).

Note The TO2 initial value becomes low level during output enable (TOE20 = 1).


Remark N = 0000H to FFFFH

6.4.3 Capture operation

The capture operation functions to capture and latch the count value of 16-bit timer counter 20 (TM20) synchronized with a capture trigger.

Set as shown in Figure 6-8 to allow 16-bit timer 20 to start the capture operation.

Figure 6-8. Settings of 16-Bit Timer Mode Control Register 20 for Capture Operation

16-bit capture register 20 (TCP20) starts a capture operation after the CPT2 capture trigger edge is detected, and latches and retains the count value of 16-bit timer counter 20. TCP20 fetches the count value within 2 clocks and retains the count value until the next capture edge detection.

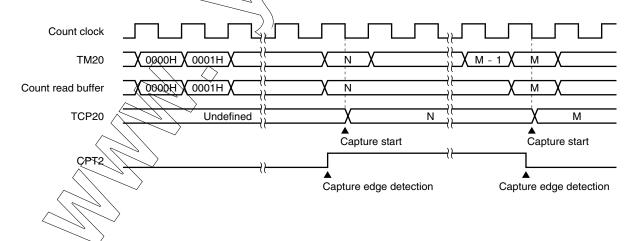

Table 6-3 and Figure 6-9 show the settings of the capture edge and the capture operation timing, respectively.

Table 6-3. Settings of Capture Edge

CPT201	CPT200	Capture Edge Selection
0	0	Capture operation disabled
0	1	CPT2 pin rising, edge
1	0	CPT2 pin falling edge
1	1	CPT2 pin both edges

Caution Because TCP20 is rewritten when a capture trigger edge is detected during TCP20 read, disable capture trigger edge detection during TCP20 read.

Figure 6-9. Capture Operation Timing (Both Edges of CPT2 Pin Are Specified)

6.4.4 16-bit timer counter 20 readout

The count value of 16-bit timer counter 20 (TM20) is read out by a 16-bit manipulation instruction.

TM20 readout is performed via a counter read buffer. The counter read buffer latches the TM20 count value. The buffer operation is then held pending at the CPU clock falling edge after the read signal of the TM20 lower byte rises and the count value is retained. The counter read buffer value in the retention state can be read out as the count value.

Cancellation of pending is performed at the CPU clock falling edge after the read signal of the TM20 higher byte falls.

RESET input clears TM20 to 0000H and starts freerunning.

Figure 6-10 shows the timing of 16-bit timer counter 20 readout.

- Cautions 1. The count value after releasing stop becomes undefined because the count operation is executed during the oscillation stabilization time.
 - 2. Though TM20 is a dedicated 16-bit transfer instruction register, an 8-bit transfer instruction can be used.
 - When using an 8-bit transfer instruction, execute by direct addressing.
 - 3. When using an 8-bit transfer instruction, execute in order from lower byte to higher byte in pairs. If the only lower byte is read, the pending state of the counter read buffer is not canceled, and if the only higher byte is read, an undefined count value is read.

CPU clock Count clock TM20 0000H 0001H N + 1Count read buffer 0000H Hf@00 Ν TM20 read signal Read signal latch prohibited period

6.5 Notes on Using 16-Bit Timer 20

6.5.1 Restrictions when rewriting 16-bit compare register 20

(1) Disable interrupts (TMMK20 = 1) and the inversion control of timer output (TOC20 = 0) before rewriting the compare register (CR20).

If CR20 is rewritten with interrupts enabled, an interrupt request may be generated immediately.

(2) Depending on the timing of rewriting the compare register (CR20), the interval time may become twice as long as the intended time. Similarly, a shorter waveform or twice-longer waveform than the intended timer output waveform may be output.

To avoid this problem, rewrite the compare register using either of the following procedures.

<Countermeasure A> When rewriting using 8-bit access

- <1> Disable interrupts (TMMK20 = 1) and the inversion control of timer output (TOC20 = 0).
- <2> First rewrite the higher 1 byte of CR20 (16 bits).
- <3> Then rewrite the lower 1 byte of CR20 (16 bits).
- <4> Clear the interrupt request flag (TMIF20).

SET1 TMC20.3

<5> Enable timer interrupts/timer output inversion after half a cycle or more of the count clock has elapsed from the beginning of the interrupt.

```
<Program example A> (count clock = 64/fx, CPU clock \neq fx)
```

```
TM90 VCT: SET1 TMMK20
                               ; Disable timer interrupts (6 clocks)
                                  Disable timer output inversion (6 clocks)
           CLR1 TMC20.3
                                  Set the rewrite value of higher byte (6 clocks)
           MOV A, #xxH
                                   Rewrite CR20 higher byte (8 clocks)
           VOM
                 !OFF17H,A ;
           MOV A, #yyH
                                  Set the rewrite value of lower byte (6 clocks)
                                  Rewrite CR20 lower byte (8 clocks)
           MOV !OFF16H,A ;
                                  Clear interrupt request flag (6 clocks)
           CLR1 TMIF20
            CLR1 TMMK20
                                   Enable timer interrupts (6 clocks)
```

Total: 32 clocks or more^{Note}

Note Because the INTTM2 signal becomes high level for half a cycle of the count clock after an interrupt is generated, the output is inverted if TOC20 is set to 1 during this period.

Enable timer output inversion

- <Countermeasure B> When rewriting using 16-bit access
- <1> Disable interrupts (TMMK20 = 1) and the inversion control of timer output (TOC20 = 0).
- <2> Rewrite CR20 (16 bits).
- <3> Wait for one cycle or more of the count clock.
- <4> Clear the interrupt request flag (TMIF20).
- <5> Enable timer interrupts/timer output inversion.

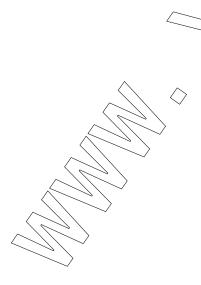
<Program example B> (count clock = 64/fx, CPU clock = fx)

TM20_VCT SET1 TMMK20 ; Disable timer interrupts

CLR1 TMC20.3 ; Disable timer output inversion

MOVW AX, #xxyyH ; Set the rewrite value of CR20

MOVW CR20, AX ; Rewrite CR20


NOP
NOP
NOP
NOP

32 NOP instructions (wait for 64/fx)^{Note}

CLR1 TMIF20 ; Clear interrupt request flag
CLR1 TMMK20 ; Enable timer interrupts

SET1 TMC20.3 ; Enable timer output inversion

Note Clear the interrupt request flag (TMIF20) after waiting for one cycle or more of the count clock from the instruction rewriting CR20 (MOVW CR20, AX).

CHAPTER 7 8-BIT TIMER/EVENT COUNTER 00

7.1 Functions of 8-Bit Timer/Event Counter 00

8-bit timer/event counter 00 has the following functions.

- Interval timer
- External event counter
- Square wave output

(1) 8-bit interval timer

When 8-bit timer/event counter 00 is used as an interval timer, it generates an interval at any time interval set in advance.

Table 7-1. Interval Time of 8-Bit Timer/Event Counter 00

Minimum Interval Time	Maximum Interval Tim	1	Resolution		
1/fx (200 ns)	2 ⁸ /fx (51.2 μs)		1/fx (200 ns)		
2 ⁵ /fx (6.4 μs)	2 ¹³ /fx (1.64 ms)		2 ⁵ /fx (6.4 μs)		

Remarks 1. fx: System clock oscillation frequency

2. The parenthesized values apply to operation at fx = 5.0 MHz.

(2) External event counter

The number of pulses of an externally input signal can be measured.

(3) Square wave output

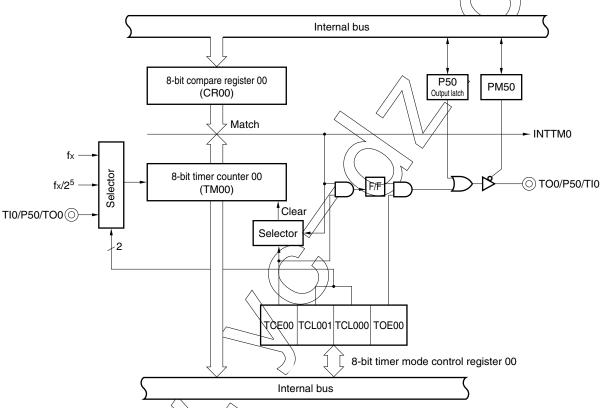
A square wave of arbitrary frequency can be output.

Table 7-2. Square Wave-Output Range of 8-Bit Timer/Event Counter 00

Minimum Pulse Width	Maximum Pulse Width	Resolution	
1/fx (200 ns)	2 ⁸ /fx (51.2 μs)	1/fx (200 ns)	
2 ⁵ /fx (6.4 μs)	2 ¹³ /fx (1.64 ms)	2 ⁵ /fx (6.4 μs)	

Remarks 1. 1x: System clock oscillation frequency

2. The parenthesized values apply to operation at fx = 5.0 MHz.


7.2 Configuration of 8-Bit Timer/Event Counter 00

8-bit timer/event counter 00 consists of the following hardware.

Table 7-3. Configuration of 8-Bit Timer/Event Counter 00

Item	Configuration	
Timer counter	8 bits × 1 (TM00)	
Register	Compare register: 8 bits × 1 (CR00)	
Timer outputs	1 (TO0)	
Control registers	8-bit timer mode control register 00 (TMC00) Port mode register 5 (PM5)	

Figure 7-1. Block Diagram of 8-Bit Timer/Event Counter 00

(1) 8-bit compare register 00 (CR00)

This is an 8-bit register that compares the value set to CR00 with the 8-bit timer register 00 (TM00) count value, and if they match, generates an interrupt request (INTTM0).

CR00 is written with an 8-bit memory manipulation instruction. Values from 00H to FFH can be set. RESET input makes CR00 undefined.

Caution Before rewriting CR00, stop the timer operation. If CR00 is rewritten while the timer operation is enabled, the match interrupt request signal may be generated immediately.

(2) 8-bit timer counter 00 (TM00)

This is an 8-bit register that counts pulses.

TM00 is read with an 8-bit memory manipulation instruction.

RESET input clears TM00 to 00H.

7.3 Registers Controlling 8-Bit Timer/Event Counter 00

The following two registers are used to control 8-bit timer/event counter 00.

- 8-bit timer mode control register 00 (TMC00)
- Port mode register 5 (PM5)

(1) 8-bit timer mode control register 00 (TMC00)

TMC00 determines whether to enable or disable 8-bit timer counter 00 (TM00), specifies the count clock for TM00, and controls the operation of the output controller of 8-bit timer/event counter 00.

TMC00 is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input clears TMC00 to 00H.

Figure 7-2. Format of 8-Bit Timer Mode Control Register 00

Symbol	<7>	6	5	4	3	2	1	<0>	Address	After reset	R/W		
TMC00	TCE00	0	0	0	0	TCL001	TCL000	TOE00	FF53H	00H	R/W		
	TCE00		8-bit timer counter 00 operation control										
	0	Opera	tion dis	abled (TM00 i	s cleare	d to 0)						
	1	Opera	tion en	abled					75				
·								\wedge					
	TCL001	.001 TCL000 8-bit timer counter 00 count clock selection											
	0	0	fx (5.0 MH	łz)								
	0	1	fx/2 ⁵ (156 kH	lz)		\supset \land	\					
	1	0	Rising	edge c	of TION	ote (
	1	1	1 Falling edge of TIQ ^{Note}										
•													
	TOE00		8-bit timer/event counter 00 output control										
	0	Outpu	Output disabled (port mode)										
	1	Outpu	t enable	ed									

Note When inputting a clock signal externally, timer output cannot be used.

Caution Always stop the timer before setting TMC00.

Remarks 1 fx: System clock oscillation frequency

2. The parenthesized values apply to operation at fx = 5.0 MHz.

(2) Port mode register 5 (PM5)

This register sets port 5 input/output in 1-bit units.

When using the P50/TI0/TO0 pin for timer output, set PM50 and the output latch of P50 to 0.

PM5 is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PM5 to FFH.

Figure 7-3. Format of Port Mode Register 5

Symbol	7	6	5	4	3	2	1	0	Address	After reset R/W
PM5	1	1	1	1	PM53	PM52	PM51	PM50	FF25H	(FIFH) R/W

PM50	P50 pin I/O mode selection	\bigcirc \langle	
0	Output mode (output buffer on)		
1	Input mode (output buffer off)		

7.4 Operation of 8-Bit Timer/Event Counter 00

7.4.1 Operation as interval timer

The interval timer repeatedly generates an interrupt at time intervals specified by the count value set to 8-bit compare register 00 (CR00) in advance.

To operate 8-bit timer/event counter 00 as an interval timer, the following settings are required/

- <1> Disable the operation of 8-bit timer counter 00 (TM00) (TCE00 (bit 7 of 8-bit timer mode control register 00 (TMC00)) = 0).
- <2> Set the count clock of 8-bit timer/event counter 00 (see Table 7-4).
- <3> Set a count value in CR00.
- <4> Enable the operation of TM00 (TCE00 = 1).

When the count value of 8-bit timer counter 00 (TM00) matches the value set to CR00, the value of TM00 is cleared to 0 and TM00 continues counting. At the same time, an interrupt request signal (INTTM0) is generated.

Table 7-4 shows the interval time, and Figure 7-4 shows the timing of interval timer operation.

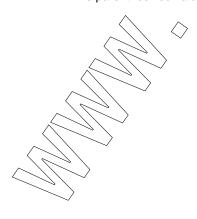

- Cautions 1. Before rewriting CR00, stop the timer operation. If CR00 is rewritten while the timer operation is enabled, the match interrupt request signal may be generated immediately.
 - 2. If setting the count clock in TMC00 and enabling the operation of TM00 are performed at the same time with an 8-bit memory manipulation instruction, the error one cycle after the timer has been started may exceed one clock. To use 8-bit timer/event counter 00 as an interval timer, therefore, perform the setting in the above sequence.

Table 7-4. Interval Time of 8-Bit Timer/Event Counter 00

TCL001	TCL000	Minimum Interval Time	Maximum Interval Time	Resolution
0	0	1/fx (200 ns)	2 ⁸ /fx (51.2 μs)	1/fx (200 ns)
0	1	2 ⁵ /fx (6.4 μs)	2 ¹³ /fx (1.64 ms)	2 ⁵ /fx (6.4 μs)
1	0	TI0 input cycle	2 ⁸ × TI0 input cycle	TI0 input edge cycle
1	1	TI0 input cycle	2 ⁸ × TI0 input cycle	TI0 input edge cycle

Remarks 1. fx: System clock oscillation frequency

2. The parenthesized values apply to operation at fx = 5.0 MHz.

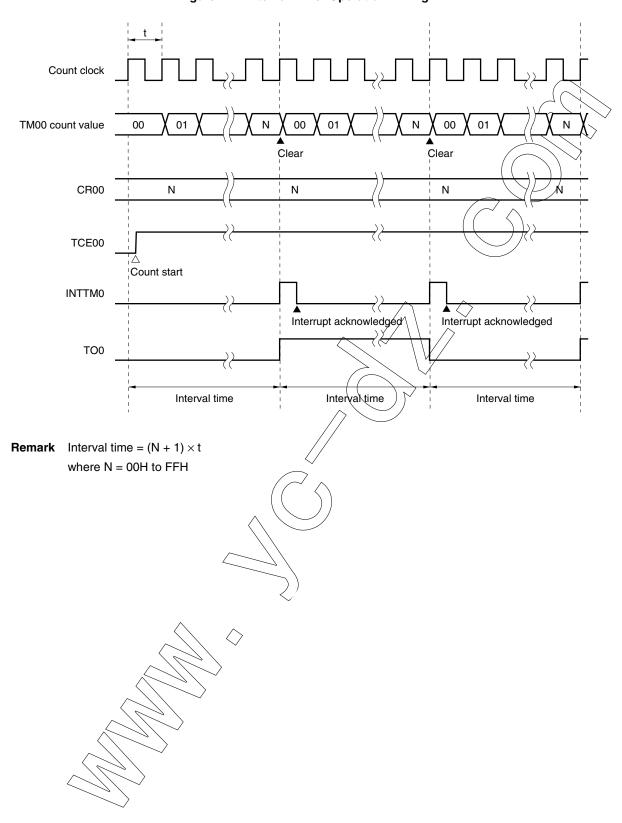


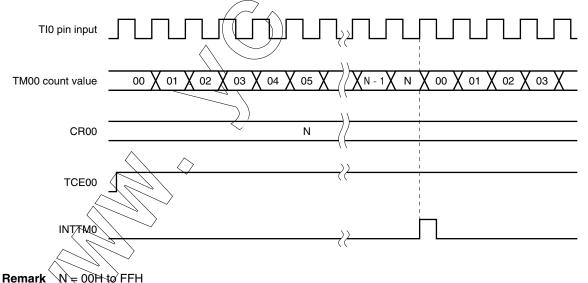
Figure 7-4. Interval Timer Operation Timing

7.4.2 Operation as external event counter

The external event counter counts the number of external clock pulses input to the TI0/P50/TO0 pin by using timer counter 00 (TM00).

To operate 8-bit timer/event counter 00 as an external event counter, the following settings are required.

- <1> Set P50 to input mode (PM50 = 1).
- Control register 00 (TMC00) = 0).
- <3> Specify the rising or falling edge of TI0 (see **Table 7-4**).
- <4> Set a count value in CR00.
- <5> Enable the operation of TM00 (TCE00 = 1).


Each time the valid edge specified by the bit 1 or 2 (TCL001 or TCL000) of TMC00 is input, the value of 8-bit timer counter 00 (TM00) is incremented.

When the count value of TM00 matches the value set to CR00, the value of TM00 is cleared to 0 and TM00 continues counting. At the same time, an interrupt request signal (INTTM0) is generated.

Figure 7-5 shows the timing of external event counter operation (with rising edge specified).

- Cautions 1. Before rewriting CR00, stop the timer operation. If CR00 is rewritten while the timer operation is enabled, the match interrupt request signal may be generated immediately.
 - 2. If setting the count clock in TMC00 and enabling the operation of TM00 are performed at the same time with an 8-bit memory manipulation instruction, the error one cycle after the timer has been started may exceed one clock. To use 8-bit timer/event counter 00 as an external event counter, therefore, perform the setting in the above sequence.

Figure 7-5. External Event Counter Operation Timing (with Rising Edge Specified)

7.4.3 Operation as square wave output

8-bit timer/event counter 00 can generate a square wave output of arbitrary frequency at intervals specified by the count value set to 8-bit compare register 00 (CR00) in advance.

To operate 8-bit timer/event counter 00 as a square wave output, the following settings are required.

- <1> Set P50 to output mode (PM50 = 0).
- <2> Set 0 to the output latch of P50.
- <3> Disable the operation of 8-bit timer counter 00 (TM00) (TCE00 (bit 7 of 8-bit timer mode control register 00 (TMC00)) = 1).
- <4> Set the count clock for 8-bit timer/event counter 00 and enable output of TOO (TOE00 (bit 0 of TMCOO) = 1).
- <5> Set a count value in CR00.
- <6> Enable the operation of TM00 (TCE00 = 1).

When the count value of 8-bit timer counter 00 (TM00) matches the value set in CR00, the TO0/P50/TI0 pin output is inverted. Through application of this mechanism, square waves of any frequency can be output. As soon as a match occurs, the TM00 value is cleared to 0 then TM00 resumes counting, generating an interrupt request signal (INTTM0).

Setting bit 7 in TMC00 (TCE00) to 0 clears the square-wave output to 0,

Table 7-5 lists the square wave output range, and Figure 7-6 shows the timing of square wave output.

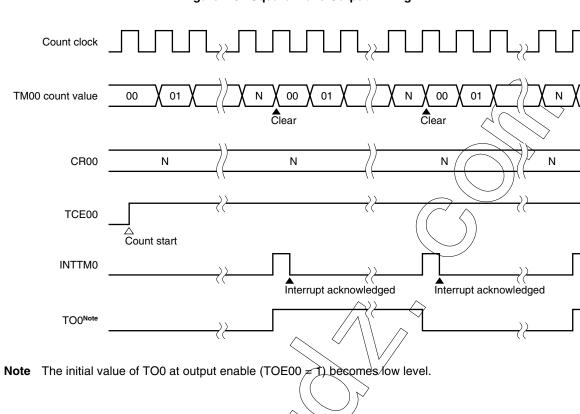
- Cautions 1. Before rewriting CR00, stop the timer operation. If CR00 is rewritten while the timer operation is enabled, the match interrupt request signal may be generated immediately.
 - 2. If setting the count clock in TMC00 and enabling the operation of TM00 are performed at the same time with an 8-bit memory manipulation instruction, the error one cycle after the timer has been started may exceed one clock. To use 8-bit timer/event counter 00 as a square wave output, therefore, perform the setting in the above sequence.

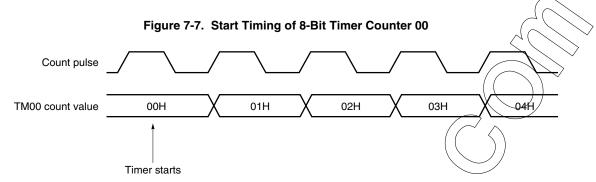
Table 7-5. Square Wave Output Range of 8-Bit Timer/Event Counter 00

TCL001	TCL000	Minimum Pulse Width	Maximum Pulse Width	Resolution
0	0	1/fx (200 ns)	2 ⁸ /fx (51.2 μs)	1/fx (200 ns)
0	1	2 ⁵ /fx (6.4 μs)	2 ¹³ /fx (1.64 ms)	2 ⁵ /fx (6.4 μs)

Remarks 1. fx: System clock oscillation frequency

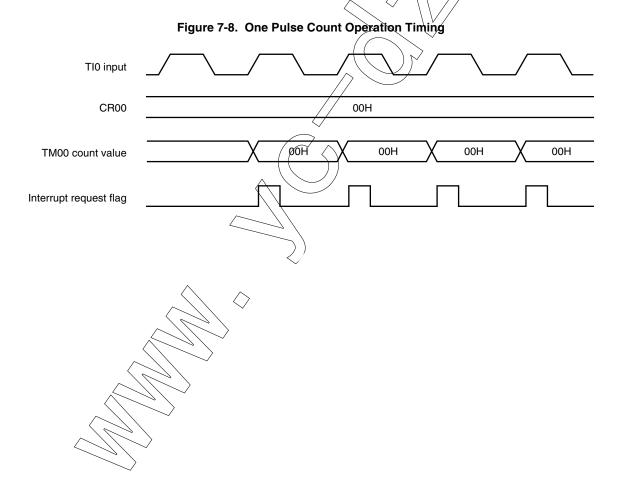
2. The parenthesized values apply to operation at fx = 5.0 MHz.




Figure 7-6. Square Wave Output Timing

7.5 Notes on Using 8-Bit Timer/Event Counter 00

(1) Error on starting timer


An error of up to 1 clock occurs after the timer has been started until a match signal is generated. This is because 8-bit timer counter 00 (TM00) is started asynchronously to the count pulse.

(2) Setting of 8-bit compare register

8-bit compare register 00 (CR00) can be set to 00H.

Therefore, one pulse can be counted when 8-bit timer/event counter 00 operates as an event counter.

CHAPTER 8 WATCHDOG TIMER

8.1 Functions of Watchdog Timer

The watchdog timer has the following functions.

- Watchdog timer
- Interval timer

Caution Select the watchdog timer mode or interval timer mode by using the watchdog timer mode register (WDTM).

(1) Watchdog timer

The watchdog timer is used to detect inadvertent program loops. When an inadvertent loop is detected, a non-maskable interrupt or the RESET signal can be generated.

Table 8-1. Inadvertent Loop Detection/Time of Watchdog Timer

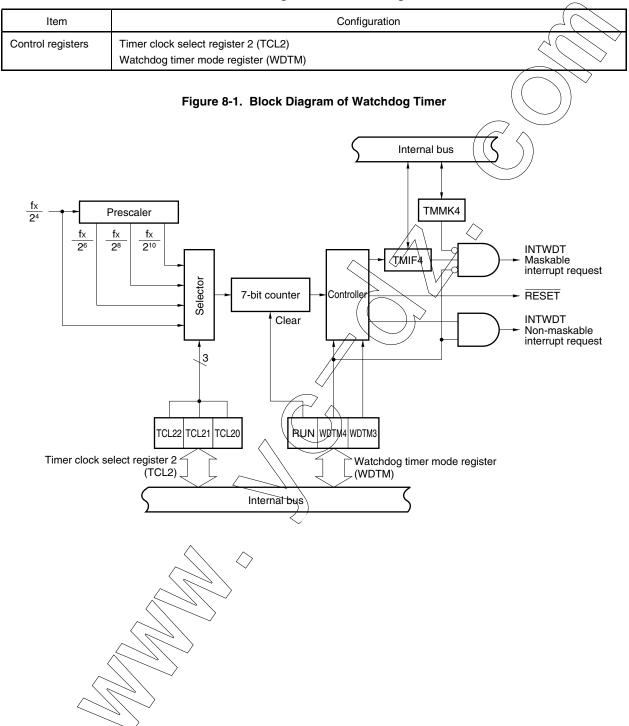
Inadvertent Loop Detection Time	At fx = 5.0 MHz
$2^{11} \times 1/f_X$	410 μs
2 ¹³ × 1/fx	1.64 ms
2 ¹⁵ × 1/fx	6.55 ms
2 ¹⁷ × 1/fx	26.2 ms

fx: System clock oscillation frequency

(2) Interval timer

The interval timer generates an intervupt at a given interval set in advance.

Table 8-2. Interval Time


	Interval	At fx = 5.0 MHz
	2 ¹¹ × 1/fx,	410 μs
/	2 ¹³ × 1/fx	1.64 ms
//	2 ¹⁵ × 1/fx	6.55 ms
/	2 ¹⁷ × 1/fx	26.2 ms

fx: System clock oscillation frequency

8.2 Configuration of Watchdog Timer

The watchdog timer consists of the following hardware.

Table 8-3. Configuration of Watchdog Timer

8.3 Registers Controlling Watchdog Timer

The following two registers are used to control the watchdog timer.

- Timer clock select register 2 (TCL2)
- Watchdog timer mode register (WDTM)

(1) Timer clock select register 2 (TCL2)

This register sets the watchdog timer count clock.

TCL2 is set with an 8-bit memory manipulation instruction.

RESET input clears TCL2 to 00H.

Figure 8-2. Format of Timer Clock Select Register 2

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
TCL2	0	0	0	0	0	TCL22	TCL21	TCL20	FF42H	00H	R/W

TCL22	TCL21	TCL20	Watchdog timer count clock selection Interval time	
0	0	0	$f_x/2^4$ (312.5 kHz) $2^{1/1}/f_x$ (410 μ s)	
0	1	0	fx/2 ⁶ (78.1 kHz) 2 ¹³ /fx (1.64 ms)	
1	0	0	fx/2 ⁸ (19.5 kHz) 2 ¹⁵ /fx (6.55 ms)	
1	1	0	fx/2 ¹⁰ (4.88 kHz) 2 ¹⁷ /fx (26.2 ms)	
Oth	er than ab	ove	Setting prohibited	

Remarks 1. fx: System clock oscillation frequency

2. The parenthesized values apply to operation at fx = 5.0 MHz.

(2) Watchdog timer mode register (WDTM)

This register sets the operation mode of the watchdog timer, and enables/disables counting of the watchdog timer.

WDTM is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input clears WDTM to 00H.

Figure 8-3. Format of Watchdog Timer Mode Register

Symbol	<7>	6	5	4	3	2	1	0	Address	After reset R/W
WDTM	RUN	0	0	WDTM4	WDTM3	0	0	0	FFF9H	OOH P/W

RUN	Watchdog timer operation selection ^{Note 1}	$\overline{\nearrow}$	<u> </u>	
0	Stop counting.))	
1	Clear counter and start counting.			

WDTM4	WDTM3	Watchdog timer operation mode selection Note 2
0	0	Operation stop
0	1	Interval timer mode (overflow and maskable interrupt occur) hote 3
1	0	Watchdog timer mode 1 (overflow and non-maskable interrupt occur)
1	1	Watchdog timer mode 2 (overflow occurs and reset operation started)

- **Notes 1.** Once RUN has been set to 1, it cannot be cleared to 0 by software. Therefore, when counting is started, it cannot be stopped by any means other than RESET input.
 - 2. Once WDTM3 and WDTM4 have been set to 1, they cannot be cleared to 0 by software.
 - 3. The watchdog timer starts operation as an interval timer when RUN is set to 1.
- Cautions 1. When the watchdog timer is cleared by setting RUN to 1, the actual overflow time is up to 0.8% shorter than the time set by timer clock select register 2 (TCL2).
 - 2. In watchdog timer mode 1 or 2, set WDTM4 to 1 after confirming that TMIF4 (bit 0 of interrupt request flag register 0 (IF0)) is set to 0. When watchdog timer mode 1 or 2 is selected under the condition where TMIF4 is 1, a non-maskable interrupt occurs at the completion of rewriting.

8.4 Operation of Watchdog Timer

8.4.1 Operation as watchdog timer

The watchdog timer detects an inadvertent program loop when bit 4 (WDTM4) of the watchdog timer mode register (WDTM) is set to 1.

The count clock (inadvertent loop detection time interval) of the watchdog timer can be selected by bits 0 to 2 (TCL20 to TCL22) of timer clock select register 2 (TCL2). By setting bit 7 (RUN) of WDTM to 1, the watchdog timer is started. Set RUN to 1 within the set inadvertent loop detection time interval after the watchdog timer has been started. By setting RUN to 1, the watchdog timer can be cleared and start counting. If RUN is not set to 1, and the inadvertent loop detection time is exceeded, the system is reset or a non-maskable interrupt is generated by the value of bit 3 (WDTM3) of WDTM.

The watchdog timer continues operation in the HALT mode, but stops in the STOP mode. Therefore, set RUN to 1 before entering the STOP mode to clear the watchdog timer, and then execute the STOP instruction.

Caution The actual inadvertent loop detection time may be up to 0.8% shorter than the set time.

Table 8-4. Inadvertent Loop Detection Time of Watchdog Timer

TCL22	TCL21	TCL20	Inadvertent Loop Detection Time At fx = 5.0 MHz
0	0	0	2 ¹¹ × 1/fx 4/10 μs
0	1	0	2 ¹³ × 1/fx 1.64 ms
1	0	0	2 ¹⁵ × 1/fx (6.55 ms
1	1	0	2 ¹⁷ × 1/fx 26.2 ms

fx: System clock oscillation frequency

8.4.2 Operation as interval timer

When bits 4 and 3 (WDTM4, WDTM3) of the watchdog timer mode register (WDTM) are set to 0 and 1 respectively, the watchdog timer also operates as an interval timer that repeatedly generates an interrupt at time intervals specified by a count value set in advance.

Select the count clock (or interval time) by setting bits 0 to 2 (TCL20 to TCL22) of timer clock select register 2 (TCL2). The watchdog timer starts operation as an interval timer when the RUN bit (bit 7 of WDTM) is set to 1.

In the interval timer mode, the interrupt mask flag (TMMK4) is valid, and a maskable interrupt (INTWDT) can be generated. The priority of INTWDT is set as the highest of all the maskable interrupts.

The interval timer continues operation in the HALT mode, but stops in the STOP mode. Therefore, set RUN to 1 before entering the STOP mode to clear the interval timer, and then execute the STOP instruction.

- Cautions 1. Once bit 4 (WDTM4) of WDTM is set to 1 (when the watchdog timer mode is selected), the interval timer mode is not set, unless the RESET signal is input.
 - 2. The interval time immediately after the setting by WDTM may be up to 0.8% shorter than the set time.

Table 8-5. Interval Time of Interval Timer

TCL22	TCL21	TCL20		Interval Time	At fx = 5.0 MHz
0	0	0	2 ¹¹ × 1/fx		410 µs
0	1	0	$2^{13} \times 1/f_X$		1.64 ms
1	0	0	$2^{15} \times 1/f_X$		6,55 ms
1	1	0	$2^{17} \times 1/f_X$	\wedge	26.2 ms

fx: System clock oscillation frequency

CHAPTER 9 SERIAL INTERFACE 00

9.1 Functions of Serial Interface 00

Serial interface 00 employs the following three modes.

- Operation stop mode
- Asynchronous serial interface (UART) mode
- 3-wire serial I/O mode

(1) Operation stop mode

This mode is used when serial transfer is not carried out. It enables power consumption reduction.

(2) Asynchronous serial interface (UART) mode

In this mode, one byte of data following the start bit is transmitted/received, and full-duplex operation is possible.

A UART-dedicated baud rate generator is incorporated, allowing communication over a wide range of baud rates. In addition, the baud rate can be defined by dividing the clock input to the ASCK pin.

(3) 3-wire serial I/O mode (MSB/LSB start bit switchable)

In this mode, 8-bit data transfer is carried out with three lines, one for the serial clock (SCK0) and two for serial data (SI0, SO0).

The 3-wire serial I/O mode supports simultaneous transmit and receive operations, reducing data transfer processing time.

It is possible to switch the start bit of 8-bit data to be transmitted between the MSB and the LSB, thus allowing connection to devices with either start bit.

The 3-wire serial I/O mode is effective for connecting display controllers and peripheral I/Os such as the 75XL Series, 78K Series, and 17K Series, which have a conventional on-chip synchronous serial interface.

9.2 Configuration of Serial Interface 00

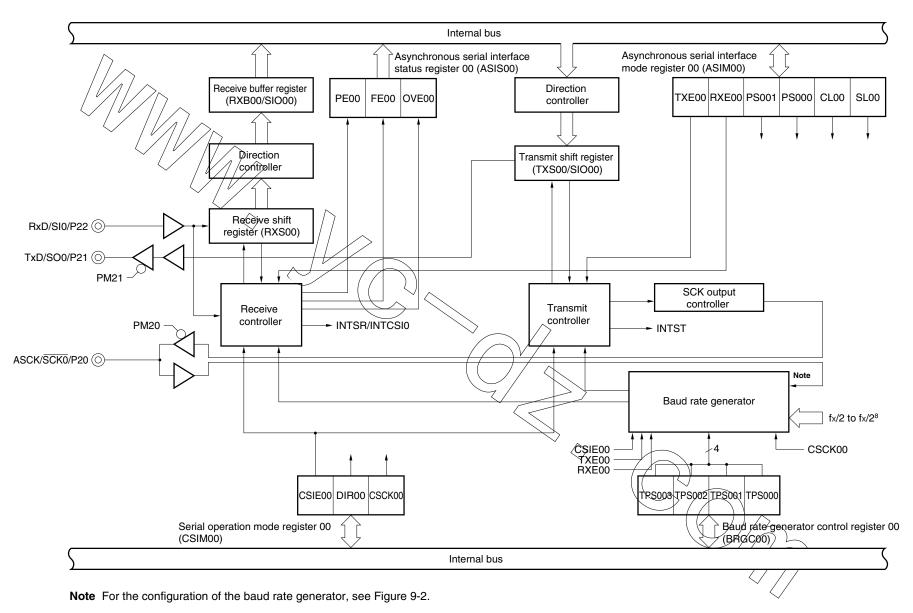

Serial interface 00 consists of the following hardware.

Table 9-1. Configuration of Serial Interface 00

Item	Configuration
Registers	Transmit shift register 00 (TXS00)
	Receive shift register 00 (RXS00)
	Receive buffer register 00 (RXB00)
Control registers	Serial operation mode register 00 (CSIM00)
	Asynchronous serial interface mode register 00 (ASIM00)
	Asynchronous serial interface status register 00 (ASIS00)
	Baud rate generator control register 00 (BRGC00)

User's Manual U11919EJ4V0UD

Figure 9-1. Block Diagram of Serial Interface 00

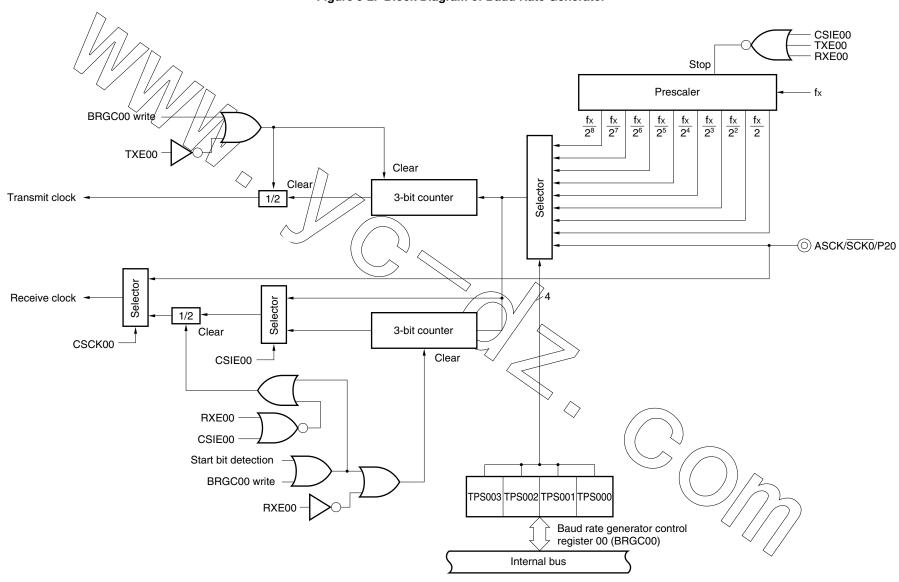


Figure 9-2. Block Diagram of Baud Rate Generator

(1) Transmit shift register 00 (TXS00)

This register is used to specify data to be transmitted. Data written to TXS00 is transmitted as serial data. If the data length is specified as 7 bits, bits 0 to 6 of the data written to TXS00 are transferred as the transmit data. The transmit operation is started by writing data to TXS00.

TXS00 is written to with an 8-bit memory manipulation instruction. It cannot be read.

RESET input sets TXS00 to FFH.

Caution Do not write to TXS00 during transmission.

TXS00 and receive buffer register 00 (RXB00) are allocated to the same address, and when reading is performed, RXB00 values are read.

(2) Receive shift register 00 (RXS00)

This register is used to convert serial data input to the RxD pin into parallel data. Each time one byte of data is received, it is transferred to receive buffer register 00 (RXB00).

RXS00 cannot be manipulated directly by program.

(3) Receive buffer register 00 (RXB00)

This register is used to hold received data. Each time one byte of data is received, a new byte of data is transferred from receive shift register 00 (RXS00).

If the data length is specified as 7 bits, receive data is transferred to bits 0 to 6 of RXB00, and the MSB of RXB00 always becomes 0.

RXB00 can be read with an 8-bit memory manipulation instruction. It cannot be written to.

RESET input makes RXB00 undefined.

Caution RXB00 and transmit shift register 00 (TXS00) are allocated to the same address, and when writing is performed, the values are written to TXS00.

(4) Transmit controller

This circuit controls transmit operations by adding a start bit, parity bit, and stop bit to data written to transmit shift register 00 (TXS00), according to the data set to asynchronous serial interface mode register 00 (ASIM00).

(5) Receive controller

This circuit controls receive operations according to the data set to asynchronous serial interface mode register 00 (ASIM00). It performs also parity error check, etc., during receive operations, and when an error is detected, it sets the value to asynchronous serial interface status register 00 (ASIS00) depending on the nature of the error.

9.3 Registers Controlling Serial Interface 00

The following four registers are used to control serial interface 00.

- Serial operation mode register 00 (CSIM00)
- Asynchronous serial interface mode register 00 (ASIM00)
- Asynchronous serial interface status register 00 (ASIS00)
- Baud rate generator control register 00 (BRGC00)

(1) Serial operation mode register 00 (CSIM00)

This register is set when using serial interface 00 in the 3-wire serial I/O mode. CSIM00 is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input clears CSIM00 to 00H.

Figure 9-3. Format of Serial Operation Mode Register 00

Symbol	<7>	6	5	4	3	2	1	0	Address	After reset	R/W
CSIM00	CSIE00	0	0	0	0	DIR00	CSCK00	0	FF72H	00H	R/W
									` ^	\wedge	

CSIE00		Operation control in 3-wire serial I/O mode
0	Operation stopped	
1	Operation enabled	

DIR00	Start bit specification
0	MSB //
1	LSB

CSCK00	Clock selection in 3-wire serial I/O mode
0	Input clock to SCK0 pin from external
1	Dedicated baud rate generator output

Cautions 1. Be sure to set bits 0 and 3 to 6 to 0.

2. Set CSIM00 to 00H in the UART mode.

(2) Asynchronous serial interface mode register 00 (ASIM00)

This register is set when using serial interface 00 in the asynchronous serial interface mode.

ASIM00 is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input clears ASIM00 to 00H.

		Figure	9-4. Fo	rmat of A	synchro	nous Ser	ial Interf	ace Mod	e Register (00					
Symbol	<7>	<6>	5	4	3	2	1	0	Address	After reset R/W					
ASIM00	TXE00	RXE00	PS001	PS000	CL00	SL00	0	0	FF70H	00H R/W					
									_						
	TXE00		Transmit operation control												
	0	Transmit	ransmit operation stopped												
	1	Transmit	ransmit operation enabled												
	RXE00 Receive operation control														
	0	Receive	ceive operation stopped												
	1	Receive	operation e	nabled											
	PS001	PS000				Parity bi	t specifica	ition 🗸							
0 0 No parity															
	0	0 1 Always add 0 parity at transmission													
	Parity check is not performed at reception (no parity error occurs)														
	1	0	Odd parity												
	1	1	Even par	ity	/	\bigcirc									
·		•			((•								

CL00	Character-length specification
0	7 bits
1	8 bits

SL00		Transmit data stop bit length specification
0	1 bit	
1	2 bits	

Cautions 1. Be sure to set bits 0 and 1 to 0.

- 2. Set ASIM00 to 00H in the 3-wire serial I/O mode.
- 3. Switching operating modes must be performed after the serial transmit/receive operation has been stopped.

Table 9-2. Operating Mode Settings of Serial Interface 00

(1) Operation stop mode

ASI	M00	CSIM00			PM22	P22	PM21	P21	PM20	P20	Start	Shift	P22/SI0/RxD	P21/SO0/TxD	P20/SCK0/ASCK
TXE00	RXE00	CSIE00	DIR00	CSCK00							Bit	Clock	Pin Function	Pin Function	Pin Function
0	0	0	×	×	×Note 1	-	-	P22	P21	R20					
	Other than above										Setti	ng pro	hibited		

(2) 3-wire serial I/O mode

ASII	M00	CSIM00			PM22	P22	PM21	P21	PM20	P20	Start	Shift	P22/SI0/RxQ	P21/SØ0/TxD	P20/SCK0/ASCK
TXE00	RXE00	CSIE00	DIR00	CSCK00							Bit	Clock	Pin Function	Pin Function	Pin Function
0	0	1	0	0	1 Note 2	×Note 2	0	1	1	×		External clock	SIONote 2	SO0 (CMOS output)	SCK0 input
				1					0	1		Internal clock			SCK0 output
		1	1	0					1	×	/ _/ \	External clock	\Diamond		SCK0 input
				1					6	\ <u>_</u> /	\	Internal clock			SCK0 output
	Other than above Setting prohibited														

(3) Asynchronous serial interface mode

ASI	M00	CSIM00			PM22	P22	PM21	/P21	PM20	P20	Start	Shift	P22/SI0/RxD	P21/SO0/TxD	P20/SCK0/ASCK
TXE00	RXE00	CSIE00	DIR00	CSCK00				>			Bit	Clock	Pin Function	Pin Function	Pin Function
1	0	0	0	0	×Note 1	×Note 1	(0	1	1	×	LSB	External	P22	TxD	ASCK input
								\cup /				clock		(CMOS output)	
									×Note 1	×Note 1		Internal			P20
					(clock			
0	1	0	0	0	1	/ /	×Note1	×Note 1	1	×		External	RxD	P21	ASCK input
							[2]					clock			
									×Note 1	×Note 1		Internal			P20
				\wedge	\wedge							clock			
1	1	0	0/	8	1	×	0	1	1	×		External		TxD	ASCK input
												clock		(CMOS output)	
					7				×Note 1	×Note 1		Internal			P20
		\										clock			
	Other than above										Setting prohibited				

Notes 1. Can be used as port function.

2. If used only for transmission, can be used as P22 (CMOS I/O).

Remark ×: Don't care

(3) Asynchronous serial interface status register 00 (ASIS00)

This register indicates the type of error when a reception error occurs in the asynchronous serial interface mode.

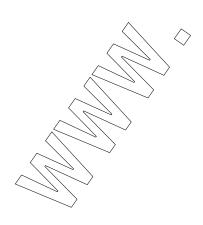
ASIS00 is read with a 1-bit or 8-bit memory manipulation instruction.

The contents of ASIS00 become undefined in the 3-wire serial I/O mode.

RESET input clears ASIS00 to 00H.

Figure 9-5. Format of Asynchronous Serial Interface Status Register 00

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
ASIS00	0	0	0	0	0	PE00	FE00	OVE00	FF71H	(QOH)	R


PE00	Parity error flag							
0	Parity error did not occur							
1	Parity error occurred (when the transmit parity did not match the receive parity)							

FE00	Framing error flag
0	Framing error did not occur
1	Framing error occurred (when stop bit was not detected)Note1

OVE00	Overrun error flag
0	Overrun error did not occur
1	Overrun error occurred ^{Note 2} (when the next receive operation was completed before the data was read from the receive buffer register)

Notes 1. Even when the stop bit length is set to 2 bits by setting bit 2 (SL00) of asynchronous serial interface mode register 00 (ASIM00), stop bit detection in the case of reception is performed with 1 bit.

2. When an overrun error occurs, be sure to read out receive buffer register 00 (RXB00). Unless RXB00 is read out, overrun errors occur at each data reception.

(4) Baud rate generator control register 00 (BRGC00)

This register is used to set the serial clock of serial interface 00.

BRGC00 is set with an 8-bit memory manipulation instruction.

RESET input clears BRGC00 to 00H.

Figure 9-6. Format of Baud Rate Generator Control Register 00

Symbol	7	6	5	4	3	2	1	0	Address After reset	R/W
BRGC00	TPS003	TPS002	TPS001	TPS000	0	0	0	0	FF73H 00H	R/W

TPS003	TPS002	TPS001	TPS000	3-bit counter source clock selection	n
0	0	0	0	fx/2 (2.5 MHz)	1
0	0	0	1	fx/2 ² (1.25 MHz)	2
0	0	1	0	fx/2 ³ (625 kHz)	3
0	0	1	1	fx/2 ⁴ (313 kHz)	4
0	1	0	0	fx/2 ⁵ (156 kHz)	5
0	1	0	1	fx/2 ⁶ (78.1 kHz)	6
0	1	1	0	fx/2 ⁷ (39.1 kHz)	7
0	1	1	1	fx/2 ⁸ (19.5 kHz)	8
1	0	0	0	Clock input from external to ASCK pin Note	-
	Other tha	an above		Setting prohibited	

Note Only used in UART mode.

- Cautions 1. When writing to BRGC00 is performed during a communication operation, the baud rate generator output is disrupted and communications cannot be performed normally.

 Be sure not to write to BRGC00 during a communication operation.
 - 2. Be sure not to select n = 1 during operation at fx = 5.0 MHz because the n = 1 setting exceeds the baud rate limit.
 - 3. When selecting the clock input from an external source, set port mode register 2 (PM2) to the input mode.

Remarks 1. fx: System clock oscillation frequency

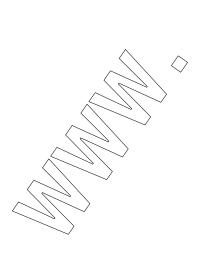
- **2.** \nearrow n: Value determined by setting TPS000 to TPS003 (1 \le n \le 8)
- 3. The parenthesized values apply to operation at fx = 5.0 MHz.

The baud rate transmit/receive clock to be generated is either a divided system clock signal, or a signal divided from the clock input to the ASCK pin.

(a) Generation of baud rate transmit/receive clock from system clock

The transmit/receive clock is generated by dividing the system clock. The baud rate generated from the system clock is found from the following expression.

[Baud rate] =
$$\frac{fx}{2^{n+1} \times 8}$$
 [Hz]


fx: System clock oscillation frequency

n: Value determined by values of TPS000 to TPS003 as shown in Figure 9-6 ($2 \le h \le 8$)

Table 9-3. Example of Relationship Between System Clock and Baud Rate

Baud Rate (bps)	n	BRGC00 Set Value	Erro	r (%)
			fx = 5.0 MHz	fx = 4.9152 MHz
1,200	8	70H	1.73	0
2,400	7	60H		\Diamond
4,800	6	50H		\nearrow
9,600	5	40H		
19,200	4	30H		
38,400	3	20H		
76,800	2	10H		

Caution Be sure not to select n = 1 during operation at fx = 5.0 MHz because the n = 1 setting exceeds the baud rate limit,

(b) Generation of baud rate transmit/receive clock from external clock of ASCK pin

The transmit/receive clock is generated by dividing the clock input from the ASCK pin. The baud rate generated from the clock input from the ASCK pin is found from the following expression.

[Baud rate] =
$$\frac{f_{ASCK}}{16}$$
 [Hz]

fasck: Frequency of clock input to the ASCK pin

Table 9-4. Relationship Between ASCK Pin Input Frequency and Baud Rate (When BRGC00 Is Set to 80H)

Baud Rate (bps)	ASCK Pin Input Frequency (kHz)
75	1.2
150	2.4
300	4.8
600	9.6
1,200	
2,400	38.4
4,800	76,8
9,600	153.6
19,200	307.2
31,250	500.0
38,400	614.4

125

9.4 Operation of Serial Interface 00

Serial interface 00 provides the following three modes.

- Operation stop mode
- Asynchronous serial interface (UART) mode
- 3-wire serial I/O mode

9.4.1 Operation stop mode

In the operation stop mode, serial transfer is not executed; therefore, the power consumption can be reduced. The P20/SCK0/ASCK, P21/SO0/TxD, and P22/SI0/RxD pins can be used as normal I/O ports.

(1) Register setting

Operation stop mode is set by serial operation mode register 00 (CSIM00) and asynchronous serial interface mode register 00 (ASIM00).

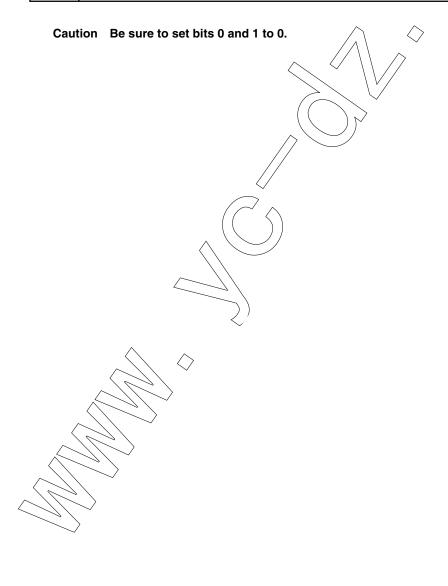
(a) Serial operation mode register 00 (CSIM00)

CSIM00 is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input clears CSIM00 to 00H.

Symbol CSIM00

١.	<7>	6	5	4	3	2	0 \	Address	After reset	R/W
	CSIE00	0	0	0	0	DIR00	CSCK00 0	FF72H	00H	R/W
								_		


CSIE00		Operation control in 3-wire serial I/O mode
0	Operation stopped	
1	Operation enabled	

Caution Be sure to set bits 0 and 3 to 6 to 0.

(b) Asynchronous serial interface mode register 00 (ASIM00)

ASIM00 is set with a 1-bit or 8-bit memory manipulation instruction. $\overline{\text{RESET}}$ input clears ASIM00 to 00H.

Symbol	<7>	<6>	5	4	3	2	1	0	Address	After reset	R/W
ASIM00	TXE00	RXE00	PS001	PS000	CL00	SL00	0	0	FF70H	00H	R/W
											>
	TXE00		Transmit operation control								
	0	Transmit	ransmit operation stopped								
	1	Transmit	ransmit operation enabled								
								,			
	RXE00				Re	eceive ope	ration contr	ol (
	0	Receive of	peration s	topped							
	1	Receive of	peration e	nabled							

9.4.2 Asynchronous serial interface (UART) mode

In this mode, the one-byte data following the start bit is transmitted/received and thus full-duplex communication is possible.

This device incorporates a UART-dedicated baud rate generator that enables communications at the desired transfer rate from many options. In addition, the baud rate can also be defined by dividing the clock input to the ASCK pin.

The UART-dedicated baud rate generator also can output the 31.25 kbps baud rate that complies with the MIDI standard.

(1) Register setting

The UART mode is set by serial operation mode register 00 (CSIM00), asynchronous serial interface mode register 00 (ASIM00), asynchronous serial interface status register 00 (ASIS00), and baud rate generator control register 00 (BRGC00).

(a) Serial operation mode register 00 (CSIM00)

CSIM00 is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input clears CSIM00 to 00H.

Set CSIM00 to 00H when UART mode is selected.

Symbol CSIM00

١.	<7>	6	5	4	3	2	< 1 V	0 \ \	Address	After reset	R/W
	CSIE00	0	0	0	0	DIR00	CSCK00	0 ✓	FF72H	00H	R/W

CSIE00		Operation control in 3-wire serial I/O mode
0	Operation stopped	
1	Operation enabled	

	/	/ / ~	Δ	
DIR00		Sta	ri) b	t specification
0	MSB			
1	LSB	\		

CSCK00	Clock selection in 3-wire serial I/O mode
0	Clock input to SCK0 pin from external
1	Dedicated baud rate generator output

Caution Be sure to set bits 0 and 3 to 6 to 0.

(b) Asynchronous serial interface mode register 00 (ASIM00)

ASIM00 is set with a 1-bit or 8-bit memory manipulation instruction. $\overline{\text{RESET}}$ input clears ASIM00 to 00H.

R/W Symbol <6> 5 4 0 Address After reset <7> ASIM00 PS001 TXE00 RXE00 PS000 CL00 SL00 0 FF70H 0 R/W

TXE00	Transmit operation control	
0	Transmit operation stopped	
1	Transmit operation enabled	

RXE00	Receive operation control
0	Receive operation stopped
1	Receive operation enabled

PS001	PS000	Parity bit specification
0	0	No parity
0	1	Always add 0 parity at transmission Parity check is not performed at reception (no parity error occurs)
1	0	Odd parity
1	1	Even parity

CL00	Character length specification					
0	7 bits					
1	8 bits					

SL00	Transmit data stop bit length specification
0	1 bit
1	2 bits

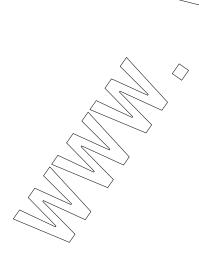
Cautions 1. Be sure to set bits 0 and 1 to 0.

2. Switching operating modes must be performed after the serial transmit/receive operation has been stopped.

(c) Asynchronous serial interface status register 00 (ASIS00)

ASIS00 is read with a 1-bit or 8-bit memory manipulation instruction. $\overline{\text{RESET}}$ input clears ASIS00 to 00H.

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
ASIS00	0	0	0	0	0	PE00	FE00	OVE00	FF71H	00H <i>(</i>	R


PE00	Parity error flag	
0	Parity error did not occur	
1	Parity error occurred (when the transmit parity did not match the receive parity)	

FE00	Framing error flag					
0	Framing error did not occur					
1	Framing error occurred (when stop bit was not detected) ^{Note 1}					

OVE00	Overrun error flag
0	Overrun error did not occur
1	Overrun error occurred ^{Note 2} (when the next receive operation was completed before the data was read from the receive buffer register)

Notes 1. Even when the stop bit length is set to 2 bits by setting bit 2 (SL00) of asynchronous serial interface mode register 00 (ASIM00), stop bit detection in the case of reception is performed with 1 bit.

2. When an overrun error occurs, be sure to read out receive buffer register 00 (RXB00). Unless RXB00 is read out, overrun errors occur at each data reception.

(d) Baud rate generator control register 00 (BRGC00)

BRGC00 is set with an 8-bit memory manipulation instruction.

RESET input clears BRGC00 to 00H.

Symbol BRGC00

7	6	5	4	3	2	1	0	Address	After reset	R/W
TPS003	TPS002	TPS001	TPS000	0	0	0	0	FF73H	M00	R/W

TPS003	TPS002	TPS001	TPS000	3-bit counter source clock selection	n
0	0	0	0	fx/2 (2.5 MHz)	1
0	0	0	1	fx/2 ² (1.25 MHz)	2
0	0	1	0	fx/2 ³ (625 kHz)	3
0	0	1	1	fx/2 ⁴ (313 kHz)	4
0	1	0	0	fx/2 ⁵ (156 kHz)	5
0	1	0	1	fx/2 ⁶ (78.1 kHz)	6
0	1	1	0	fx/2 ⁷ (39.1 kHz)	7
0	1	1	1	fx/2 ⁸ (19.5 kHz)	8
1	0	0	0	Clock input from external to ASCK pin	-
	Other than above			Setting prohibited	

- Cautions 1. When writing to BRGC00 is performed during a communication operation, the baud rate generator output is disrupted and communications cannot be performed normally. Be sure not to write to BRGC00 during a communication operation.
 - 2. Be sure not to select n = 1 during operation at fx = 5.0 MHz because the n = 1 setting exceeds the band rate limit.
 - 3. When selecting the clock input from an external source, set port mode register 2 (PM2) to the input mode.
- Remarks 1. fx: System clock oscillation frequency
 - 2. n: Value determined by setting TPS000 to TPS003 ($1 \le n \le 8$)
 - 3. The parenthesized values apply to operation at fx = 5.0 MHz.

The baud rate transmit/receive clock to be generated is either a divided system clock signal, or a signal divided from the clock input to the ASCK pin.

(i) Generation of baud rate transmit/receive clock from system clock

The transmit/receive clock is generated by dividing the system clock. The baud rate generated tron the system clock is estimated by using the following expression.

$$\text{[Hz]} = \frac{fx}{2^{n+1} \times 8} \text{[Hz]}$$

x: System clock oscillation frequency

n: Value determined by setting TPS000 to TPS003 as shown in the above table $(2 \le n \le 8)$

Table 9-5. Example of Relationship Between System Clock and Baud Rate

Baud Rate (bps)	n	BRGC00 Set Value	e Error (%)	
			fx = 5.0 MHz	fx = 4.9152 MHz
1,200	8	70H	1.73	0
2,400	7	60H		
4,800	6	50H		
9,600	5	40H		
19,200	4	30H		
38,400	3	20H		
76,800	2	10H		

Caution Be sure not to select n = 1 during operation at fx = 5.0 MHz because the n = 1 setting exceeds the baud rate limit.

(ii) Generation of baud rate transmit/receive clock from external clock of ASCK pin

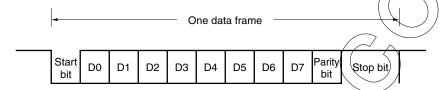
The transmit/receive clock is generated by dividing the clock input from the ASCK pin. The baud rate generated from the clock input from the ASCK pin is estimated by using the following expression.

[Baud rate] =
$$\frac{f_{ASCK}}{16}$$
 [Hz]

fasck: Frequency of clock input to the ASCK pin

Table 9-6. Relationship Between ASCK Pin Input Frequency and Baud Rate (When BRGC00 Is Set to 80H)

Baud Rate (bps)	ASCK Fin Input Frequency (kHz)
75	1.2
150	2.4
300	4.8
600	9.6
1,200	19.2
2,400	38.4
4,800	76.8
9,600	153.6
19,200	307.2
31,250	500.0
38,400	614.4

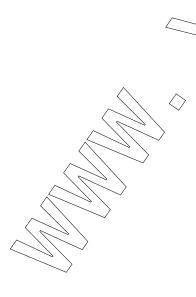

(2) Communication operation

(a) Data format

The transmit/receive data format is as shown in Figure 9-7. One data frame consists of a start bit, character bits, parity bit, and stop bit(s).

The specification of character bit length, parity selection, and specification of stop bit length for one data frame is carried out using asynchronous serial interface mode register 00 (A\$1M00).

Figure 9-7. Format of Asynchronous Serial Interface Transmit/Receive Data



- Start bit 1 bit
- Character bits 7 bits/8 bits
- Parity bit...... Even parity/odd parity/0 parity/ng parity
- Stop bit..... 1 bit/2 bits

When 7 bits are selected as the number of character bits, only the lower 7 bits (bits 0 to 6) are valid; in transmission the most significant bit (bit 7) is ignored, and in reception the most significant bit (bit 7) is always "0".

The serial transfer rate is selected by means of ASIM00 and baud rate generator control register 00 (BRGC00).

If a serial data receive error occurs, the receive error contents can be determined by reading the status of asynchronous serial interface status register 00 (ASIS00).

(b) Parity types and operation

The parity bit is used to detect a bit error in the communication data. Normally, the same kind of parity bit is used on the transmitting side and the receiving side. With even parity and odd parity, a "1" bit (odd number) error can be detected. With 0 parity and no parity, an error cannot be detected.

(i) Even parity

At transmission

The parity bit is determined so that the number of bits with a value of "1" in the transmit data including parity bit may be even. The parity bit value should be as follows.

The number of bits with a value of "1" is an odd number in transmit data: The number of bits with a value of "1" is an even number in transmit data: 0"

At reception

The number of bits with a value of "1" in the receive data including parity bit is counted, and if the number is odd, a parity error occurs.

(ii) Odd parity

At transmission

Conversely to the even parity, the parity bit is determined so that the number of bits with a value of "1" in the transmit data including parity bit may be odd. The parity bit value should be as follows.

The number of bits with a value of "1" is an odd number in transmit data: 0

The number of bits with a value of "1" is an even number in transmit data: 1

At reception

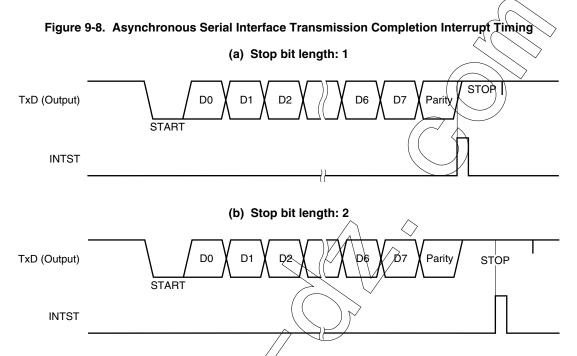
The number of bits with a value of "1" in the receive data including parity bit is counted, and if the number is even, a parity error occurs.

(iii) 0 parity

When transmitting, the parity bit is set to "0" irrespective of the transmit data.

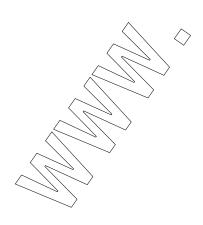
At reception, a parity bit check is not performed. Therefore, a parity error does not occur, irrespective of whether the parity bit is set to "0" or "1".

(iv) No parity


A parity bit is not added to the transmit data.

At reception, data is received assuming that there is no parity bit. Since there is no parity bit, a parity error does not occur.

(c) Transmission


A transmit operation is started by writing transmit data to transmit shift register 00 (TXS00). The start bit, parity bit, and stop bit(s) are added automatically.

When the transmit operation starts, the data in TXS00 is shifted out, and when TXS00 is empty, a transmission completion interrupt (INTST) is generated.

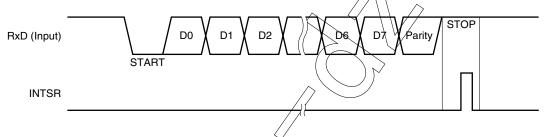
Caution Do not rewrite asynchronous serial interface mode register 00 (ASIM00) during a transmit operation. If the ASIM00 register is rewritten during transmission, subsequent transmission may not be performed (the normal state is restored by RESET input).

It is possible to determine whether transmission is in progress by software by using a transmission completion interrupt (INTST) or the interrupt request flag (STIF00) set by INTST.

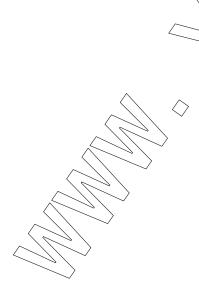
(d) Reception

When bit 6 (RXE00) of asynchronous serial interface mode register 00 (ASIM00) is set to 1, a receive operation is enabled and sampling of the RxD pin input is performed.

RxD pin input sampling is performed using the serial clock specified by ASIM00.


When the RxD pin input becomes low, the 3-bit counter starts counting, and when half the time determined by the specified baud rate has passed, the data sampling start timing signal is output. If the RxD pin input sampled again as a result of this start timing signal is low, it is identified as a start bit, the 3-bit counter is initialized and starts counting, and data sampling is performed. When character data, a parity bit, and one stop bit are detected after the start bit, reception of one frame of data ends.

When one frame of data has been received, the receive data in the shift register is transferred to receive buffer register 00 (RXB00), and a reception completion interrupt (INTSR) is generated.

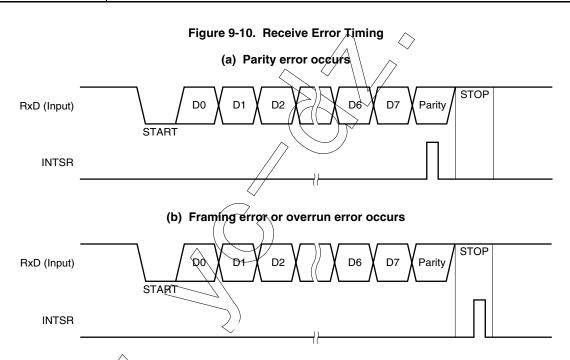

If an error occurs, the receive data in which the error occurred is still transferred to RXB00, and INTSR is generated.

If the RXE00 bit is reset to 0 during the receive operation, the receive operation is stopped immediately. In this case, the contents of RXB00 and asynchronous serial interface status register 00 (ASIS00) are not changed, and INTSR is not generated.

Figure 9-9. Asynchronous Serial Interface Reception Completion Interrupt Timing

Caution Be sure to read receive buffer register 00 (RXB00) even if a receive error occurs. If RXB00 is not read, an overrun error will occur when the next data is received, and the receive error state will continue indefinitely.

(e) Receive errors


The following three errors may occur during a receive operation: a parity error, framing error, or overrun error. Upon data reception, an error flag is set in asynchronous serial interface status register 00 (ASIS00). Receive error causes are shown in Table 9-7.

It is possible to determine what kind of error occurred during reception by reading the contents of ASIS00 in the reception error interrupt servicing (see **Figures 9-9** and **9-10**).

The contents of ASIS00 are reset to 0 by reading receive buffer register 00 (RXB00) or receiving the next data (if there is an error in the next data, the corresponding error flag is set).

Table 9-7. Receive Error Causes

Receive Error	Cause
Parity error	Transmission-time parity specification and reception data parity do not match
Framing error	Stop bit not detected
Overrun error	Reception of next data is completed before data is read from receive buffer register

- Cautions 1. The contents of the ASIS00 register are reset to 0 by reading receive buffer register 00 (RXB00) or receiving the next data. To ascertain the error contents, read ASIS00 before reading RXB00.
 - 2. Be sure to read receive buffer register 00 (RXB00) even if a receive error occurred.

 If RXB00 is not read, an overrun error will occur when the next data is received, and the receive error state will continue indefinitely.

(f) Reading receive data

When the reception completion interrupt (INTSR) is generated, receive data can be read by reading the value of receive buffer register 00 (RXB00).

To read the receive data stored in receive buffer register 00 (RXB00), read while reception is enabled (RXE00 = 1).

Remark However, if it is necessary to read receive data after reception has stopped (RXE00 = 0) read using either of the following methods.

(a) Read after setting RXE00 = 0 after waiting for one cycle or more of the source clock selected by BRGC00.

(b) Read after bit 2 (DIR00) of serial operation mode register 00 (CSTM00) is set to 1.

Program example of (a) (BRGC00 = 00H (source clock = fx/2))

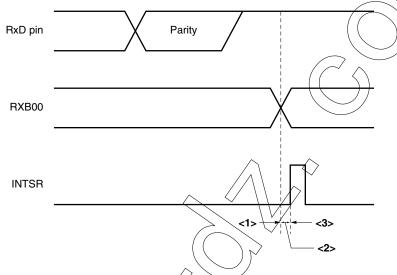
INTRXE: ;<Reception completion interrupt routine>

NOP ;2 clocks

CLR1 RXE00 ; Reception stopped

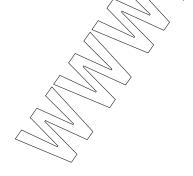
MOV A, RXB00 ; Read receive data

Program example of (b)


INTRXE: ;<Reception completion interrupt routine>

SET1 CSIM00.2 ; DIR00 flag is set to LSB first

CLR1 RXE00 ; Reception stopped MOV A, RXB00 ; Read receive data


(3) Cautions related to UART mode

- (a) When bit 7 (TXE00) of asynchronous serial interface mode register 00 (ASIM00) is cleared during transmission, be sure to set transmit shift register 00 (TXS00) to FFH, then set TXE00 to 1 before executing the next transmission.
- (b) When bit 6 (RXE00) of asynchronous serial interface mode register 00 (ASIM00) is cleared during reception, receive buffer register 00 (RXB00) and reception completion interrupt (INTSR) are as follows.

When RXE00 is set to 0 at the time indicated by <1>, RXB00 holds the previous data and INTSR is not generated.

When RXE00 is set to 0 at the time indicated by <2>, RXB00 renews the data and INTSR is not generated. When RXE00 is set to 0 at the time indicated by <3>, RXB00 renews the data and INTSR is generated.

9.4.3 3-wire serial I/O mode

The 3-wire serial I/O mode is useful for connection of peripheral I/Os and display controllers, etc., which incorporate a conventional synchronous serial interface, such as the 75X/XL Series, 78K Series, 17K Series, etc.

Communication is performed using three lines: the serial clock ($\overline{SCK0}$), serial output (SO0), and serial input (SI0).

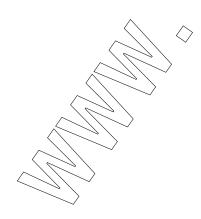
(1) Register setting

3-wire serial I/O mode settings are performed using serial operation mode register 00 (CSIM00), asynchronous serial interface mode register 00 (ASIM00), and baud rate generator control register 00 (BRGC00).

(a) Serial operation mode register 00 (CSIM00)

CSIM00 is set with a 1-bit or 8-bit memory manipulation instruction. RESET input clears CSIM00 to 00H.

Symbol CSIM00


ol	<7>	6	5	4	3	2	1	0	Address	After reset	R/W
0	CSIE00	0	0	0	0	DIR00	CSCK00	0	FF72H	00H	R/W
									. / \		

CSIE00		Operation control in 3-wire serial 1/0 mode
0	Operation stopped	
1	Operation enabled	

DIR00	Start bit specification
0	MSB //
1	LSB

CSCK00	Clock selection in 3-wire serial I/O mode
0	Clock input to SCK0 pin from external
1	Dedicated baud rate generator output

Caution Be sure to set bits 0 and 3 to 6 to 0.

(b) Asynchronous serial interface mode register 00 (ASIM00)

ASIM00 is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input clears ASIM00 to 00H.

When the 3-wire serial I/O mode is selected, ASIM00 must be set to 00H.

Symbol	<7>	<6>	5	4	3	2	1	0	Address	After reset	R/W		
ASIM00	TXE00	RXE00	PS001	PS000	CL00	SL00	0	0	FF70H /		R/W		
'									4				
	TXE00		Transmit operation control										
	0	Transmit	ransmit operation stopped										
	1	Transmit	ansmit operation enabled										
	RXE00		Receive operation control										
	0	Receive of	ceive operation stopped										
	1	Receive of	eceive operation enabled										
			\wedge										
	PS001	PS000				Parit	y bit speci	fication					
	0	0	No parity					V/					
	0	1			at transm			\checkmark					
			Parity ch	eck is not	performed	l at reception	on (no pari	ty error occu	ırs)				
	1	0	Odd parit	у		\triangle							
	1	1	Even par	ity	/	//							
					4	/							
	CL00					haracter le	ngth speci	fication					
	0	7 bits	7 bits										
	1	8 bits											
•													
	SL00				Transmit	data stop b	it length s	pecification					
	0	1 bit			2)								

Cautions 1. Be sure to set bits 0 and 1 to 0.

2 bits

2. Switching operating modes must be performed after the serial transmit/receive operation has been stopped.

(c) Baud rate generator control register 00 (BRGC00)

BRGC00 is set with an 8-bit memory manipulation instruction.

RESET input clears BRGC00 to 00H.

Symbol BRGC00

7	6	5	4	3	2	1	0	Address	After reset	R/W
TPS003	TPS002	TPS001	TPS000	0	0	0	0	FF73H	00H	R/W

TPS003	TPS002	TPS001	TPS000	3-bit counter source clock selection	
0	0	0	0	fx/2 (2.5 MHz)) 1
0	0	0	1	fx/2 ² (1.25 MHz)	2
0	0	1	0	fx/2 ³ (625 kHz)	3
0	0	1	1	fx/2 ⁴ (313 kHz)	4
0	1	0	0	fx/2 ⁵ (156 kHz)	5
0	1	0	1	fx/2 ⁶ (78.1 kHz)	6
0	1	1	0	fx/2 ⁷ (39.1 kHz)	7
0	1	1	1	fx/2 ⁸ (19.5 kHz)	8
	Other tha	an above		Setting prohibited	

- Cautions 1. When writing to BRGC00 is performed during a communication operation, the baud rate generator output is disrupted and communications cannot be performed normally. Be sure not to write to BRGC00-during a communication operation.
 - 2. Be sure not to select n = 1 during operation at fx = 5.0 MHz because the n = 1 setting exceeds the baud rate limit.
 - 3. When selecting the clock input from an external source, set port mode register 2 (PM2) to the input mode.

Remarks 1. fx: System clock oscillation frequency

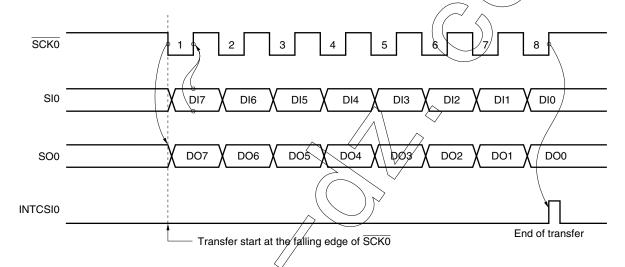
- 2. n: Value determined by setting TPS000 to TPS003 ($1 \le n \le 8$)
- 3. The parenthesized values apply to operation at fx = 5.0 MHz.

If the internal clock is used as the serial clock for 3-wire serial I/O mode, set the TPS000 to TPS003 bits to set the frequency of the serial clock. To obtain the frequency to be set, use the following formula. When the serial clock is input from external, setting BRGC00 is not necessary.

Serial clock frequency = $\frac{fx}{2^{n+1}}$ [Hz]

fx: System clock oscillation frequency

n. Value determined by setting TPS000 to TPS003 as shown in the above table $(1 \le n \le 8)$


(2) Communication operation

In the 3-wire serial I/O mode, data transmission/reception is performed in 8-bit units. Data is transmitted/received bit by bit in synchronization with the serial clock.

Transmit shift register 00 (TXS00/SIO00) and receive shift register 00 (RXS00) shift operations are performed in synchronization with the fall of the serial clock ($\overline{SCK0}$). Then transmit data is held in the SO0 latch and output from the SO0 pin. Also, receive data input to the SI0 pin is latched in receive buffer register 00 (RXB00/SIO00) on the rise of $\overline{SCK0}$.

At the end of an 8-bit transfer, the operations of TXS00/SIO00 and RXS00 stop automatically, and the interrupt request signal (INTCSI0) is generated.

Figure 9-11. 3-Wire Serial I/O Mode Timing

(3) Transfer start

Serial transfer is started by setting transfer data to transmit shift register 00 (TXS00/SIO00) when the following two conditions are satisfied

- Serial operation mode register 00 (CSIM00) bit 7 (CSIE00) = 1
- Internal serial clock is stopped or SCKO is at high level after 8-bit serial transfer.

Caution If CSIE00 is set to 1 after data write to TXS00/SIO00, transfer does not start.

A termination of 8 bit transfer stops the serial transfer automatically and generates the interrupt request signal (INTCSIO)

CHAPTER 10 INTERRUPT FUNCTIONS

10.1 Interrupt Function Types

The following two types of interrupt functions are used.

(1) Non-maskable interrupt

This interrupt is acknowledged unconditionally. It does not undergo interrupt priority control and is given top priority over all other interrupt requests.

A standby release signal is generated.

The interrupt from the watchdog timer is the one non-maskable interrupt source.

(2) Maskable interrupts

These interrupts undergo mask control. If two or more interrupts are simultaneously generated, each interrupt has a predetermined priority as shown in Table 10-1.

A standby release signal is generated.

Maskable interrupts have four external interrupt and five internal interrupt sources.

10.2 Interrupt Sources and Configuration

There are a total of ten non-maskable and maskable interrupt sources (see Table 10-1).

Table 10-1. Interrupt Source List

Interrupt Type	Priority ^{Note 1}		Interrupt Source	Internal/	Vector	Basic
		Name	Trigger	External	Table Address	Configuration Type ^{Note 2}
Non-maskable	1	INTWDT	Watchdog timer overflow (watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	H9000	(C)
	2	INTP1			0008H	
	3	INTP2			000AH	
	4	INTSR	End of serial interface 00 UART reception	Internal	000CH	(B)
		INTCSI0	End of serial interface 00 3-wire transfer			
	5	INTST	End of serial interface 00 UART transmission		000EH	
	6	INTTM0	Generation of 8-bit timer/event counter 00 match signal	\Diamond	0010H	
	7	INTTM2	Generation of 16-bit timer 20 match signal		0014H	
	8	INTKR	Key return signal detection	External	002AH	(C)

Notes 1. The priority is the priority applicable when two or more maskable interrupts are generated simultaneously. 0 is the highest priority and 8 is the lowest.

2. Basic configuration types (A) to (C) correspond to (A) to (C) in Figure 10-1.

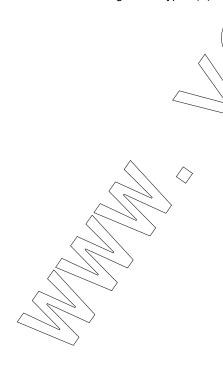
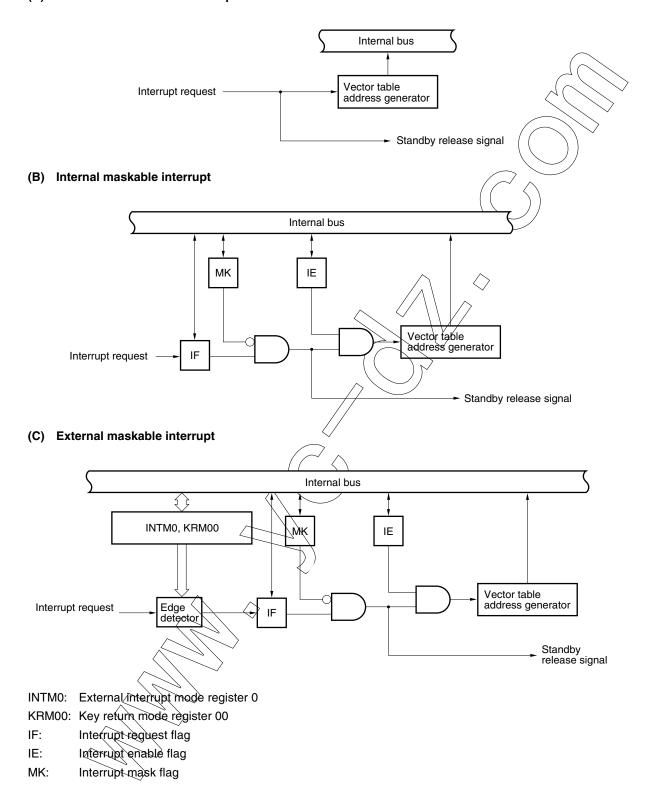



Figure 10-1. Basic Configuration of Interrupt Function

(A) Internal non-maskable interrupt

10.3 Registers Controlling Interrupt Function

The following five registers are used to control the interrupt functions.

- Interrupt request flag registers (IF0 and IF1)
- Interrupt mask flag registers (MK0 and MK1)
- External interrupt mode register 0 (INTM0)
- Program status word (PSW)
- Key return mode register 00 (KRM00)

Table 10-2 lists the interrupt request flag and interrupt mask flag names corresponding to interrupt requests.

Table 10-2. Flags Corresponding to Interrupt Request \$ignal Names

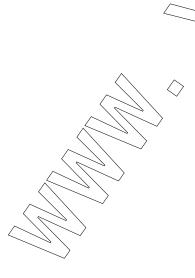
Interrupt Request Signal Name	Interrupt Request Flag	Interrupt Mask Flag
INTWDT	TMIF4	TMMK4
INTP0	PIF0	РМК0
INTP1	PIF1	PMK1
INTP2	PIF2	PMK2
INTSR/INTCSI0	SRIF00	SRMK00
INTST	STIF00	STMK00
INTTM0	TMIF00	TMMK00
INTTM2	TMIF20	TMMK20
INTKR	KRIF00	KRMK00

(1) Interrupt request flag registers (IF0 and IF1)

The interrupt request flag is set to 1 when the corresponding interrupt request is generated or an instruction is executed. It is cleared to 0 upon acknowledgement of an interrupt request, upon RESET input, or when an instruction is executed.

IFO and IF1 are set with a 1-bit or 8-bit memory manipulation instruction.

RESET input clears IF0 and IF1 to 00H.


Figure 10-2. Format of Interrupt Request Flag Register

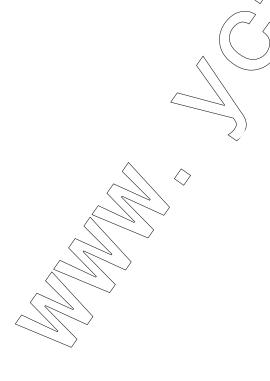
Symbol	7	<6>	<5>	<4>	<3>	<2>	<1>	<0>	Address	After reset R/W
IF0	0	TMIF00	STIF00	SRIF00	PIF2	PIF1	PIF0	TMIF4	FFE0H	00H P/W
									. /	
	<7>	6	5	4	3	2	1	<0>	. (
IF1	TMIF20	0	0	0	0	0	0	KRIF00	FFE1H	00H R/W

××IF×	Interrupt request flag
0	No interrupt request signal is generated
1	Interrupt request signal is generated; interrupt request state

Cautions 1. Be sure to clear bit 7 of IF0 and bits 1 to 6 of IF1 to 9.

- 2. The TMIF4 flag is R/W enabled only when the watchdog timer is used as an interval timer. If watchdog timer mode 1 or 2/is/used, set the TMIF4 flag to 0.
- 3. Because port 3 has an alternate function as an external interrupt input, when the output level is changed by specifying the output mode of the port function, an interrupt request flag is set. Therefore, the interrupt mask flag should be set to 1 before using the output mode.
- 4. If an interrupt is acknowledged, the interrupt request flag is automatically cleared before the interrupt routine is entered.

(2) Interrupt mask flag registers (MK0 and MK1)


The interrupt mask flag is used to enable/disable the corresponding maskable interrupt servicing. MK0 and MK1 are set with a 1-bit or 8-bit memory manipulation instruction.

RESET input sets MK0 and MK1 to FFH.

Figure 10-3. Format of Interrupt Mask Flag Register 7 <6> <5> <4> <3> <2> <1> <0> Address After reset Symbol MK0 1 TMMK00 STMK00 SRMK00 PMK2 PMK1 PMK0 TMMK4 FFE4H <7> 6 5 3 2 <0> 1 FFE5H KRMK00 MK1 TMMK20 FFH R/W 1 1 $\times \times MK \times$ Interrupt servicing control 0 Interrupt servicing enabled Interrupt servicing disabled 1

Cautions 1. Be sure to set bit 7 of MK0 and bits 1 to 6 of MK1 to 1.

- 2. If the TMMK4 flag is read when the watchdog timer is used in watchdog timer mode 1 or 2, its value becomes undefined.
- 3. Because port 3 has an alternate function as an external interrupt input, when the output level is changed by specifying the output mode of the port function, an interrupt request flag is set. Therefore, the interrupt mask flag should be set to 1 before using the output mode.

(3) External interrupt mode register 0 (INTM0)

This register is used to set the valid edge of INTP0 to INTP2.

INTM0 is set with an 8-bit memory manipulation instruction.

RESET input clears INTM0 to 00H.

Figure 10-4. Format of External Interrupt Mode Register 0

Symbol INTM0

7	6	5	4	3	2	1	0	Address	After reset R/W
ES21	ES20	ES11	ES10	ES01	ES00	0	0	FFECH	00H R/W

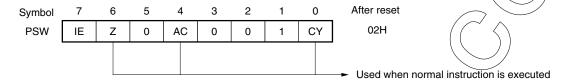
ES21	ES20	INTP2 valid edge selection	
0	0	Falling edge	
0	1	Rising edge	
1	0	Setting prohibited	
1	1	Both rising and falling edges	

ES11	ES10	INTP1 valid edge selection
0	0	Falling edge
0	1	Rising edge
1	0	Setting prohibited
1	1	Both rising and falling edges

ES01	ES00	INTP0 valid edge selection
0	0	Falling edge
0	1	Rising edge
1	0	Setting prohibited
1	1	Both rising and falling edges

Cautions 1. Be sure to set bits 0 and 1 to 0.

2. Before setting the INTM0 register, be sure to set the corresponding interrupt mask flag (xxMKx = 1) to disable interrupts. After setting the INTM0 register, clear the interrupt request flag (xxMFx = 0), then clear the interrupt mask flag (xxMKx = 0) to enable interrupts.


(4) Program status word (PSW)

The program status word is a register used to hold the instruction execution result and the current status of the interrupt requests. The IE flag to set maskable interrupt enable/disable is mapped to the PSW.

Besides 8-bit unit read/write, this register can carry out operations with bit manipulation instructions and dedicated instructions (EI and DI). When a vectored interrupt request is acknowledged, the PSW is automatically saved into a stack, and the IE flag is reset to 0. It is restored from the stack with the RETI and POP PSW instructions.

RESET input sets the PSW to 02H.

Figure 10-5. Configuration of Program Status Word

IE		Interrupt acknowledge enable/disable	
0	Disable		
1	Enable		

(5) Key return mode register 00 (KRM00)

KRM00 is used to specify the pin at which a key return signal is detected.

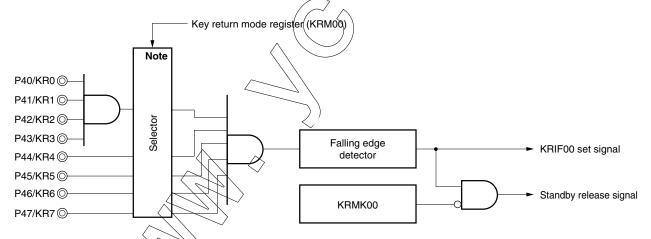
KRM00 is set with a 1-bit or 8-bit memory manipulation instruction.

Bit 0 (KRM000) is set for the four pins from KR0/P40 to KR3/P43. Bits 4 to 7 (KRM004 to KRM007) are set in 1-bit units for pins KR4/P44 to KR7/P47, respectively.

RESET input clears KRM00 to 00H.

Figure 10-6. Format of Key Return Mode Register 00

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W				
KRM00	KRM007	KRM006	KRM005	KRM004	0	0	0	KRM000	FFF5H	00H	R/W\				
	KRM00n		Key return signal detection selection												
	0	Undet	ected												
	1	Detect	ted (at t	he fallin	ıg edge	e of port	t 4)								


Cautions 1. Be sure to set bits 1 to 3 to 0.

- 2. When KRM00n is set to 1, the corresponding pin is connected to a pull-up resistor unless it is in output mode. In output mode, the pull-up resistor is not connected.
- 3. Before setting KRM00, set bit 0 of MK1 (KRMK00 = 1) to disable interrupts.

 To enable interrupts, clear bit 0 of IF1 (KR(F00 = 0)), then bit 0 of MK1 (KRMK00 = 0).

Remark n = 0, 4 to 7

Figure 10-7. Block Diagram of Falling Edge Detector

Note Selector used to select the pin to be used for falling edge input

10.4 Interrupt Servicing Operation

10.4.1 Non-maskable interrupt request acknowledgement operation

The non-maskable interrupt request is unconditionally acknowledged even when interrupts are disabled. It is not subject to interrupt priority control and takes precedence over all other interrupts.

When the non-maskable interrupt request is acknowledged, the PSW and PC are saved to the stack in that order, the IE flag is reset to 0, the contents of the vector table are loaded to the PC, and then program execution branches.

Figure 10-8 shows the flowchart from non-maskable interrupt request generation to acknowledgement. Figure 10-9 shows the timing of non-maskable interrupt request acknowledgement. Figure 10-10 shows the acknowledgement operation if multiple non-maskable interrupts are generated.

Caution During non-maskable interrupt service program execution, do not input another non-maskable interrupt request; if it is input, the service program will be interrupted and the new interrupt request will be acknowledged.

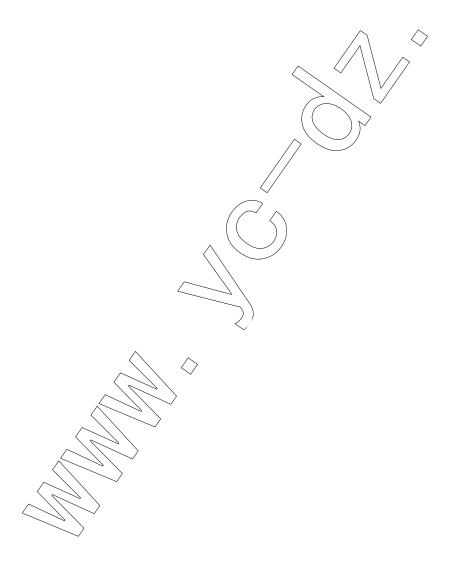


Figure 10-8. Flowchart from Non-Maskable Interrupt Request Generation to Acknowledgement

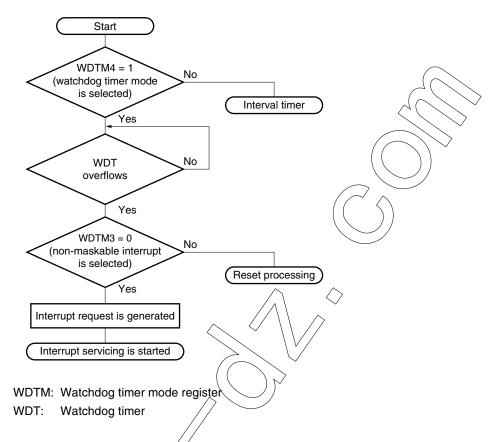


Figure 10-9. Non-Maskable Interrupt Request Acknowledgement Timing

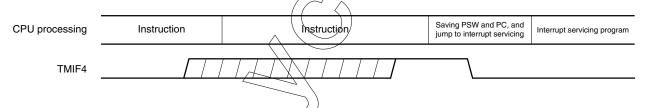
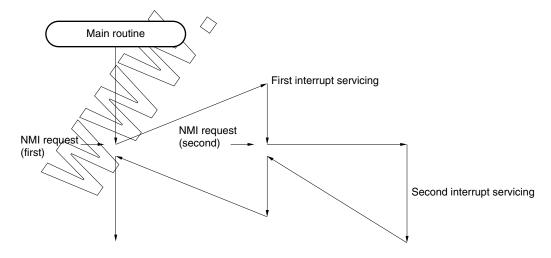



Figure 10-10. Acknowledgement of Non-Maskable Interrupt Request

10.4.2 Maskable interrupt request acknowledgement operation

A maskable interrupt request can be acknowledged when the interrupt request flag is set to 1 and the corresponding interrupt mask flag is cleared to 0. A vectored interrupt request is acknowledged in the interrupt enabled status (when the IE flag is set to 1).

The time required to start the interrupt servicing after a maskable interrupt request has been generated is shown in Table 10-3.

See Figures 10-12 and 10-13 for the interrupt request acknowledgement timing.

Table 10-3. Time from Generation of Maskable Interrupt Request to Servicing

Minimum Time	Maximum Time ^{Note}
9 clocks	19 clocks

Note The wait time is maximum when an interrupt request is generated immediately before the BT and BF instructions.

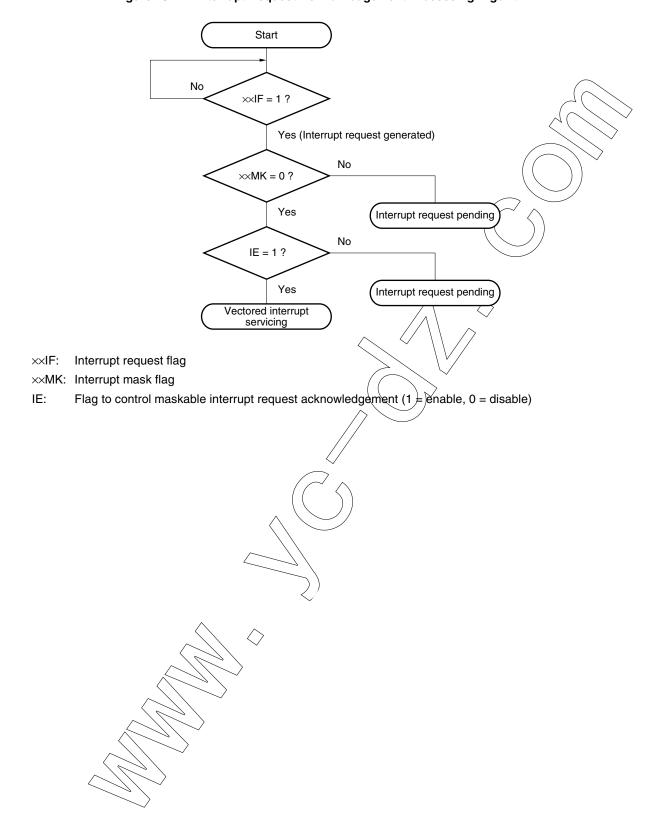
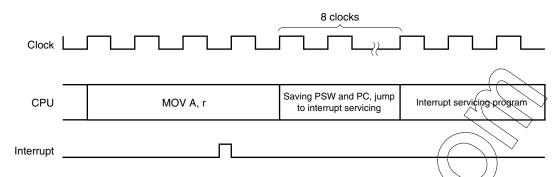
When two or more maskable interrupt requests are generated at the same time, they are acknowledged starting from the interrupt request assigned the highest priority.

A pending interrupt is acknowledged when the status in which it can be acknowledged is set.

Figure 10-11 shows the algorithm of acknowledging interrupt requests.

When a maskable interrupt request is acknowledged, the contents of the PSW and PC are saved to the stack in that order, the IE flag is reset to 0, and the data in the vector table determined for each interrupt request is loaded to the PC, and execution branches.

To return from interrupt servicing, use the RETV instruction.

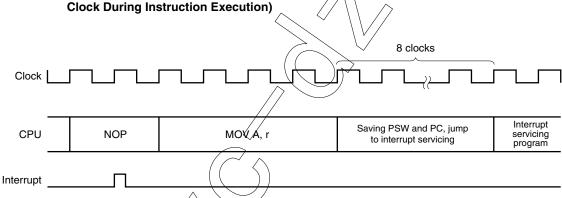
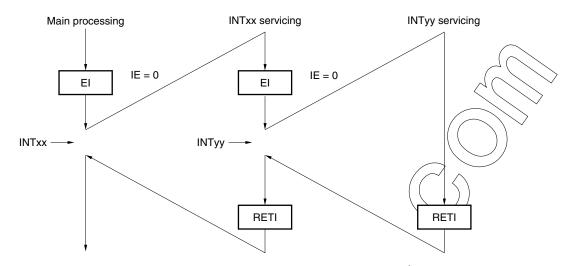

Figure 10-11. Interrupt Request Acknowledgement Processing Algorithm

Figure 10-12. Interrupt Request Acknowledgement Timing (Example of MOV A, r)

If an interrupt request flag (\times IF) is set before instruction clock n (n = 4 to 10) under execution becomes n - 1, the interrupt is acknowledged after the instruction under execution is complete. Figure 10-12 shows an example of the interrupt request acknowledgement timing for an 8-bit data transfer instruction MQV A, r. Since this instruction is executed for 4 clocks, if an interrupt occurs within 3 clocks after the execution starts, the interrupt acknowledgement processing is performed after the MOV A, r instruction is completed.

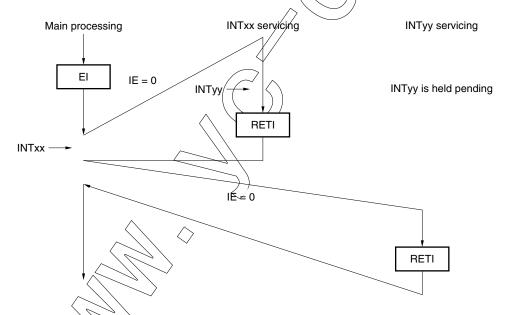
Figure 10-13. Interrupt Request Acknowledgement Timing (When Interrupt Request Flag Is Set at Last

If an interrupt request flag (xxIF) is set at the last clock of the instruction, the interrupt acknowledgement processing starts after the next instruction is executed. Figure 10-13 shows an example of the interrupt acknowledgement timing for an interrupt request flag that is set at the second clock of NOP (2-clock instruction). In this case, the MOV A, r instruction after the NOP instruction is executed, and then the interrupt acknowledgement processing is performed.


Caution Interrupt requests are held pending while the interrupt request flag register (IF0 or IF1) or the interrupt mask flag register (MK0 or MK1) is being accessed.

10.4.3 Nesting processing

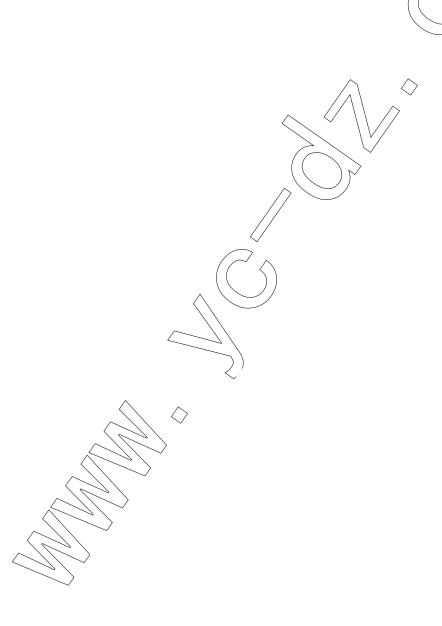
Nesting processing in which another interrupt is acknowledged while an interrupt is serviced can be executed by priority. When two or more interrupts are generated at once, interrupt servicing is performed according to the priority assigned to each interrupt request in advance (see **Table 10-1**).


Figure 10-14. Example of Nesting

Example 1. Nesting is acknowledged

During interrupt INTxx servicing, interrupt request INTyy is acknowledged, and nesting occurs. The EI instruction is issued before each interrupt request acknowledgement, and the interrupt request acknowledgement enable state is set.

Example 2. Nesting does not occur because interrupts are not enabled


Because interrupts are not enabled in interrupt INTxx servicing (the EI instruction is not issued), interrupt request INTyy is not acknowledged, and nesting does not occur. The INTyy request is held pending and acknowledged after the INTxx servicing is performed.

IE = 0: Interrupt request acknowledgement disabled

10.4.4 Interrupt request hold

Some instructions may hold the acknowledgement of an interrupt request pending until the completion of the execution of the next instruction even if the interrupt request (maskable interrupt, non-maskable interrupt, and external interrupt) is generated during the execution of that instruction. These instructions (interrupt request hold instructions) are shown below.

- Manipulation instruction for interrupt request flag registers 0 and 1 (IF0 and IF1)
- Manipulation instruction for interrupt mask flag registers 0 and 1 (MK0 and MK1)

CHAPTER 11 STANDBY FUNCTION

11.1 Standby Function and Configuration

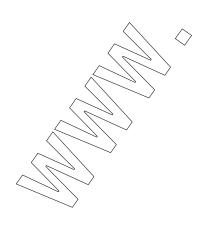
11.1.1 Standby function

The standby function is used to reduce the power consumption of the system and can be effected in the following two modes.

(1) HALT mode

This mode is set when the HALT instruction is executed. The HALT mode stops the operation clock of the CPU. The system clock oscillator continues oscillating. This mode does not reduce the current consumption as much as the STOP mode, but is useful for resuming processing immediately when an interrupt request is generated, or for intermittent operations.

(2) STOP mode


This mode is set when the STOP instruction is executed. The STOP mode stops the system clock oscillator and stops the entire system. The current consumption of the CPU can be substantially reduced in this mode.

Data memory can be retained at a low voltage ($V_{DD} = 1.8 \text{ V min.}$). Therefore, this mode is useful for retaining the contents of the data memory with an extremely low current consumption.

The STOP mode can be released by an interrupt request, so that this mode can be used for intermittent operation. However, some time is required until the system clock oscillator stabilizes after the STOP mode has been released. If processing must be resumed immediately by using an interrupt request, therefore, use the HALT mode.

In both modes, the previous contents of the registers, flags, and data memory before setting standby mode are all retained. In addition, the statuses of the output latch of the 1/O ports and output buffer are also retained.

Caution To set the STOP mode, be sure to stop the operations of the peripheral hardware, and then execute the STOP instruction.

11.1.2 Standby function control register

The wait time after the STOP mode is released upon interrupt request until the oscillation stabilizes is controlled by the oscillation stabilization time select register (OSTS).

OSTS is set with an 8-bit memory manipulation instruction.

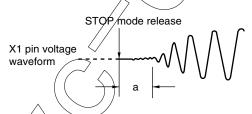
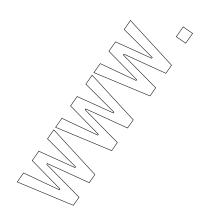

 $\overline{\text{RESET}}$ input sets OSTS to 04H. However, the oscillation stabilization time after $\overline{\text{RESET}}$ input is 2^{15} /fx, instead of 2^{17} /fx.

Figure 11-1. Format of Oscillation Stabilization Time Select Register

Symbol	7	6	5	4	3	2	1	0	Address After reset	R/W
OSTS	0	0	0	0	0	OSTS2	OSTS1	OSTS0	FFFAH 04H	R/W


OSTS2	OSTS1	OSTS0	Oscillation stabilization time selection
0	0	0	2 ¹² /fx (819 μs)
0	1	0	2 ¹⁵ /fx (6.55 ms)
1	0	0	2 ¹⁷ /fx (26.2 ms)
Oth	Other than above		Setting prohibited

Caution The wait time after the STOP mode is released does not include the time from STOP mode release to clock oscillation start ("a" in the figure below), regardless of release by RESET input or by interrupt generation.

Remarks 1. fx: System clock oscillation frequency

2. The parenthesized values apply to operation at fx = 5.0 MHz.

11.2 Operation of Standby Function

11.2.1 HALT mode

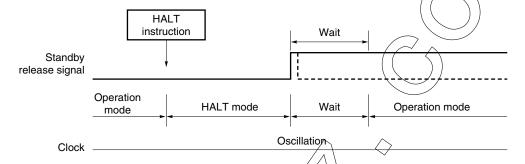
(1) HALT mode

HALT mode is set by executing the HALT instruction.

The operation status in the HALT mode is shown in the following table.

Table 11-1. HALT Mode Operating Status

Item	HALT Mode Operating Status				
Clock generator	System clock oscillation enabled Clock supply to CPU stopped				
CPU	Operation stopped				
Port (output latch)	Retains the status before setting the HALT mode				
16-bit timer	Operation enabled				
8-bit timer/event counter	Operation enabled				
Watchdog timer	Operation enabled				
Serial interface	Operation enabled				
External interrupt	Operation enabled				
Key return	Only the pin set to key return mode is enabled				


(2) Releasing HALT mode

The HALT mode can be released by the following three sources.

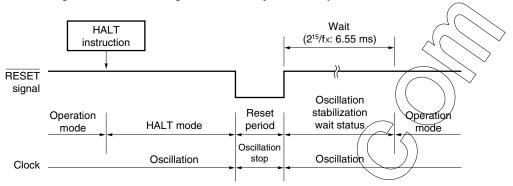
(a) Releasing by unmasked interrupt request

The HALT mode is released by an unmasked interrupt request. In this case, if the interrupt request is enabled to be acknowledged, vectored interrupt servicing is performed. If interrupt acknowledgement is disabled, the instruction at the next address is executed.

Figure 11-2. Releasing HALT Mode by Interrupt

- Remarks 1. The broken lines indicate the case where the interrupt request that has released the standby mode is acknowledged.
 - 2. The wait time is as follows.
 - When vectored interrupt servicing is performed:
 9 to 10 clocks
 - When vectored interrupt servicing is not performed: 1 to 2 clocks

(b) Releasing by non-maskable interrupt request


The HALT mode is released regardless of whether interrupts are enabled or disabled, and vectored interrupt servicing is performed.

(c) Releasing by RESET input

When the HALT mode is released by the RESET signal, execution branches to the reset vector address in the same manner as the ordinary reset operation, and program execution is started.

Figure 11-3. Releasing HALT Mode by RESET Input

Remarks 1. fx: System clock oscillation frequency

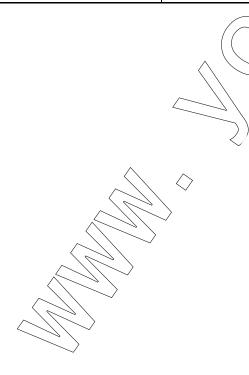
2. The parenthesized values apply to operation at $f_x = 5.0$ MHz.

Table 11-2. Operation After Release of HALT Mode

Releasing Source	MK××	IE	Operation
Maskable interrupt request	0	0	Executes next address instruction
	0	1	Executes interrupt servicing
	1	×	Retains HALT mode
Non-maskable interrupt request	_	×	Executes interrupt servicing
RESET input	-	<i>F</i> ~	Reset processing

11.2.2 STOP mode

(1) Setting and operation status of STOP mode

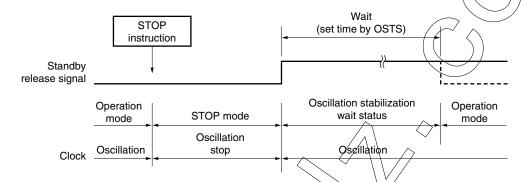

The STOP mode is set by executing the STOP instruction.

Caution Because the standby mode can be released by an interrupt request signal, the standby mode is released as soon as it is set if there is an interrupt source whose interrupt request flag is set and interrupt mask flag is reset. When the STOP mode is set, therefore, the HALT mode is set immediately after the STOP instruction has been executed, the wait time set by the oscillation stabilization time select register (OSTS) elapses, and then operation mode is set.

The operation status in the STOP mode is shown in the following table.

Table 11-3. STOP Mode Operating Status

Item	STOP Mode Operating Status
Clock generator	Stops system clock oscillation
CPU	Stops operation
Port (output latch)	Retains the status before setting the STOP mode
16-bit timer	Stops operation \ \ \ \ \ \
8-bit timer/event counter	Operation is enabled only when 10 is selected as the count clock
Watchdog timer	Stops operation
Serial interface	Operation is enabled only when clock input from external is selected as serial clock
External interrupt	Operation enabled
Key return	Only the pin set to key return mode is enabled

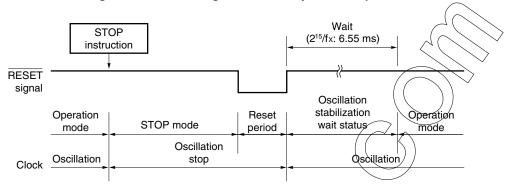

(2) Releasing STOP mode

The STOP mode can be released by the following two types of sources.

(a) Releasing by unmasked interrupt request

The STOP mode can be released by an unmasked interrupt request. In this case, if the interrupt is enabled to be acknowledged, vectored interrupt servicing is performed, after the oscillation stabilization time has elapsed. If interrupt acknowledgement is disabled, the instruction at the next address is executed.

Figure 11-4. Releasing STOP Mode by Interrupt

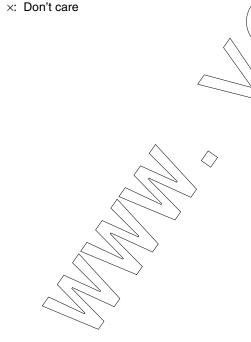


Remark The broken lines indicate the case where the interrupt request that has released the standby mode is acknowledged.

(b) Releasing by RESET input

When the STOP mode is released by the $\overline{\text{RESET}}$ signal, the reset operation is performed after the oscillation stabilization time has elapsed.

Figure 11-5. Releasing STOP Mode by RESET Input



Remarks 1. fx: System clock oscillation frequency

2. The parenthesized values apply to operation at fx = 5. MHz.

Table 11-4. Operation After Release of STOP Mode

Releasing Source	MK××	IE	Operation		
Maskable interrupt request	0	0	Executes next address instruction		
	0	1 /	Executes interrupt servicing		
	1	*/	Retains STOP mode		
RESET input	_	_</td <td>Reset processing</td>	Reset processing		

CHAPTER 12 RESET FUNCTION

The following two operations are available to generate reset signals.

- (1) External reset input via RESET pin
- (2) Internal reset by program loop time detected by watchdog timer

External and internal reset have no functional differences. In both cases, program execution starts at the address at 0000H and 0001H by reset signal input.

When a low level is input to the RESET pin or the watchdog timer overflows, a reset is applied and each hardware is set to the status shown in Table 12-1. Each pin is high impedance during reset input or during oscillation stabilization time just after reset release.

When a high level is input to the RESET pin, the reset is released and program execution is started after the oscillation stabilization time (2¹⁵/fx) has elapsed. The reset applied by the watchdog timer overflow is automatically released after reset, and program execution is started after the oscillation stabilization time (2¹⁵/fx) has elapsed (see **Figures 12-2** through **12-4**).

- Cautions 1. For an external reset, input a low level for 10 us or more to the RESET pin.
 - 2. When the STOP mode is released by reset, the STOP mode contents are held during reset input. However, the port pins become high impedance.

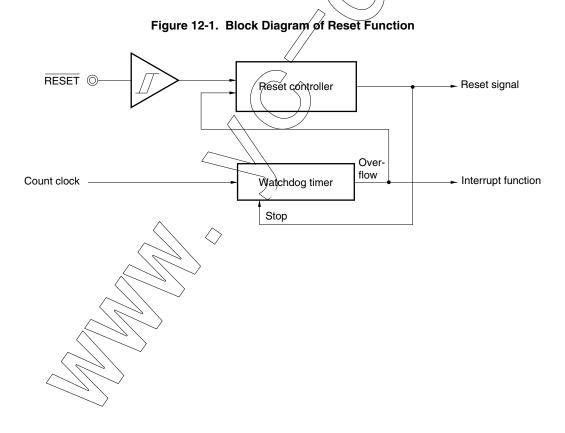


Figure 12-2. Reset Timing by RESET Input

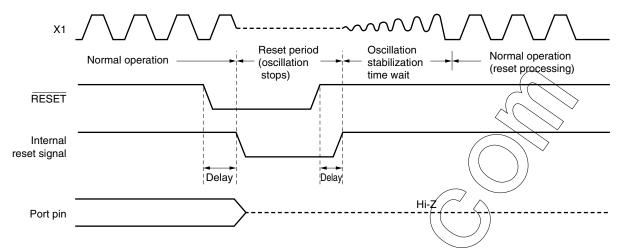


Figure 12-3. Reset Timing by Overflow in Watchdog Timer

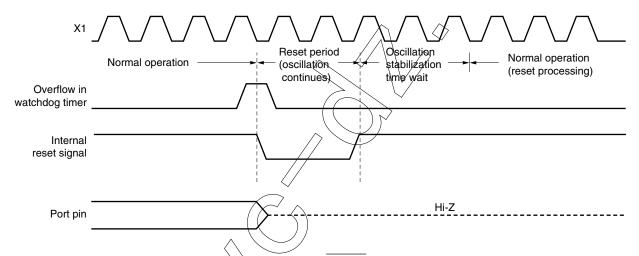


Figure 12-4. Reset Timing by RESET Input in STOP Mode

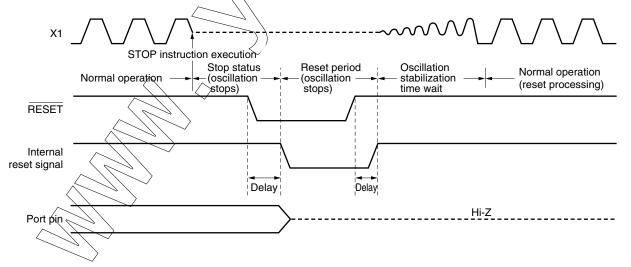


Table 12-1. Hardware Status After Reset

Hardware Status After Rese							
Program counter (PC) ^{Note 1}	The contents of reset vector tables (0000H and 0001H) are set.						
Stack pointer (SP)	Undefined						
Program status word (PSW)	02H						
RAM	Data memory	Undefined ^{Note 2}					
	General-purpose registers	Undefined ^{Note 2}					
Ports (P0 to P5) (output latch)		00H					
Port mode registers (PM0 to PM5)		FFH <					
Pull-up resistor option register (PU	JO)	(00H)					
Processor clock control register (F	PCC)	02H					
Oscillation stabilization time selec	t register (OSTS)	04H					
16-bit timer 20	Timer counter (TM20)	0000H					
	Compare register (CR20)	FFFFH					
	Mode control register (TMC20)	00H					
	Capture register (TCP20)	Undefined					
8-bit timer/event counter 00	Timer counter (TM00)	00H					
	Compare register (CR00)	Undefined					
	Mode control register (TMC00)	00H					
Watchdog timer	Timer clock select register (TCL2)	00H					
	Mode register (WDTM)	00H					
Serial interface	Mode register (CSIMØ0)	00H					
	Asynchronous serial interface mode register (ASIM00)	00H					
	Asynchronous serial interface status register (ASIS00)	00H					
	Baud rate generator control register (BRGC00)	00H					
	Transmit shift register (TX\$00)	FFH					
	Receive buffer register (RXB00)						
Interrupts	Réquest flag registers (IF0, IF1)	00H					
	Mask flag registers (MK0, MK1)	FFH					
	External interrupt mode register (INTM0)	00H					
	Key return mode register (KRM00)	00H					

Notes 1. During reset isput and oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined.

All other hardware remains unchanged after reset.

2. The post-reset values are retained in the standby mode.

CHAPTER 13 μ PD78F9026A

The μ PD78F9026A is a version with the internal ROM of the mask ROM versions replaced with a flash memory. The differences between the μ PD78F9026A and the mask ROM versions are shown in Table 13-1.

Table 13-1. Differences Between μPD78F9026A and Mask ROM Versions

	Item	Flash Memory Version	Mask ROM Versions				
		μPD78F9026A	μPD789022	μPD789024	μPD789025	μPD789026	
Internal ROM memory		16 KB (flash memory)	4 KB	8 KB	12 KB	16 KB	
	Internal high- speed RAM	512 bytes	256 bytes		512 bytes		
IC pin		Not provided	Provided				
V _{PP} pin		Provided	Not provided				
Electrical specifications		Refer to CHAPTER 15	5 ELECTRICAL SPECIFICATIONS.				

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM version.

★ 13.1 Flash Memory Characteristics

Flash memory programming is performed by connecting a dedicated flash programmer (Flashpro III (part no. FL-PR3, PG-FP3)/Flashpro IV (part no. FL-PR4, PG-FP4)) to the target system with the μ PD78F9026A mounted on the target system (on-board). A flash memory program adapter (FA adapter), which is a target board used exclusively for programming, is also provided.

Remark FL-PR3, FL-PR4, and the program adapter are products made by Naito Densei Machida Mfg. Co., Ltd. (TEL +81-45-475-4191).

Programming using flash memory has the following advantages.

- Software can be modified after the microcontroller is solder-mounted on the target system.
- Distinguishing software facilities small-quantity, varied model production
- Easy data adjustment when starting mass production

13.1.1 Programming environment


The following shows the environment required for μ PD78F9026A flash memory programming.

When Flashpro III (part no. FL-PR3, PG-FP3) or Flashpro IV (part no. FL-PR4, PG-FP4) is used as a dedicated flash programmer, a host machine is required to control the dedicated flash programmer. Communication between the host machine and flash programmer is performed via RS-232C/USB (Rev. 1.1).

For details, refer to the manuals for Flashpro III/Flashpro IV.

Remark USB is supported by Flashpro IV only.

Figure 13-1. Environment for Writing Program to Flash Memory

13.1.2 Communication mode

Use the communication mode shown in Table 13-2 to perform communication between the dedicated flash programmer and μ PD78F9026A.

Table 13-2. Communication Mode List

Communication		-	Pins Used	Number of V _{PP}			
Mode	COMM PORT	SIO Clock	CPU Clock		Multiple	4()	Pulses
			In Flashpro	On Target Board	Rate		Ť
3-wire serial I/O	SIO ch-0 (3-wire, sync.)	100 Hz to 1.25 MHz ^{Note 2}	1, 2, 4, 5 MHz ^{Notes 2, 3}	1 to 5 MHz ^{Note 2}	1.0	S(0/RxD/P22 SO0/TxD/P21 \$CK0/ASCK/P20	0
UART	UART ch-0 (Async.)	4,800 to 76,800 bps Notes 2,4	5 MHz ^{Note 5}	4.91 or 5 MHz ^{Note 2}	1.0	RxD/SI0/P22 TxD/SO0/P21	8
Pseudo 3-wire	Port A (Pseudo- 3 wire)	100 Hz to 1 kHz	1, 2, 4, 5 MHz ^{Notes 2, 3}	1 to 5 MHz ^{Note 2}	1.0	P01 P02 P00	12
	Port B (Pseudo- 3 wire)					P40/KR0 P41/KR1 P42/KR2	13

Notes 1. Selection items for TYPE settings on the dedicated flash programmer (Flashpro III (part no. FL-PR3, PG-FP3)/Flashpro IV (part no. FL-PR4, PG-FP4)).

- 2. The possible setting range differs depending on the voltage. For details, refer to CHAPTER 15 ELECTRICAL SPECIFICATIONS.
- 3. 2 or 4 MHz only for Flashpro III
- **4.** Because signal wave slew also affects UART communication, in addition to the baud rate error, thoroughly evaluate the slew and baud rate error.
- **5.** Only for Flashpro IV. However, when using Flashpro III, be sure to select the clock of the resonator on the board. UART cannot be used with the clock supplied by Flashpro III.

Figure 13-2. Communication Mode Selection Format

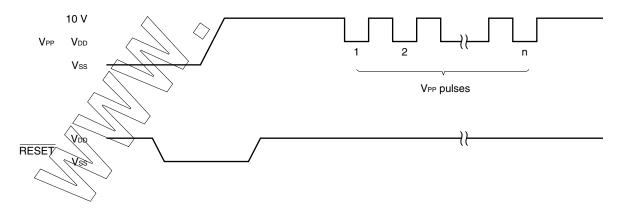
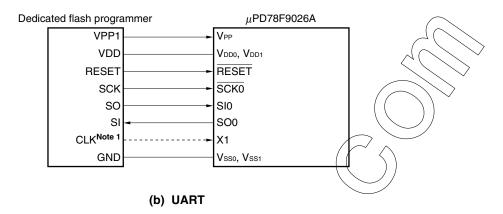
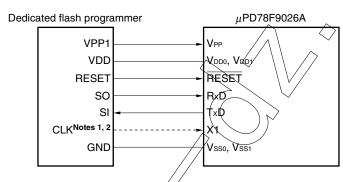
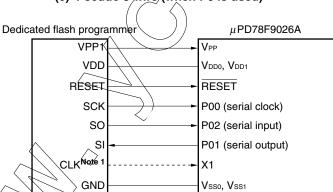





Figure 13-3. Example of Connection with Dedicated Flash Programmer

(a) 3-wire serial I/O

(c) Pseudo 3-wire (when P0 is used)

- Notes 1. Connect this pin when the system clock is supplied from the dedicated flash programmer. If a resonator is already connected to the X1 pin, the CLK pin does not need to be connected.
 - 2. When using UART with Flashpro III, the clock of the resonator connected to the X1 pin must be used, so connection to the CLK pin is not necessary.

Caution The Voo pin, if already connected to the power supply, must be connected to the VDD pin of the dedicated flash programmer. When using the power supply connected to the VDD pin, supply voltage before starting programming.

If Flashpro III (part no. FL-PR3, PG-FP3)/Flashpro IV (part no. FL-PR4, PG-FP4) is used as a dedicated flash programmer, the following signals are generated for the μ PD78F9026A. For details, refer to the manual of Flashpro III/Flashpro IV.

Table 13-3. Pin Connection List

Signal Name	I/O	Pin Function	Pin Name	3-Wire Serial I/O	UART	Pseudo 3-Wire
VPP1	Output	Write voltage	VPP	0		> ⊚
VPP2	-	_	_	×	X	×
VDD	I/O	V _{DD} voltage generation/ voltage monitoring	VDD0, VDD1	⊚ ^{Note}	Note	⊚ Note
GND	-	Ground	Vsso, Vss1	0 ((~ (•	0
CLK	Output	Clock output	X1	0	\mathcal{I}	0
RESET	Output	Reset signal	RESET	0	0	0
SI	Input	Receive signal	SO0/TxD/P01/P41	0	0	0
SO	Output	Transmit signal	SI0/RxD/P02/P42	\wedge \circ \Diamond	0	0
SCK	Output	Transfer clock	SCK0/P00/P40 /		×	0
HS	Input	Handshake signal		\ \/*/	×	×

Note VDD voltage must be supplied before programming is started.

Remark ©: Pin must be connected.

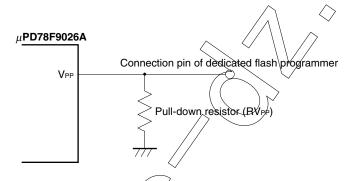
O: If the signal is supplied on the target board, pin does not need to be connected.

x: Pin does not need to be connected.

13.1.3 On-board pin processing

When performing programming on the target system, provide a connector on the target system to connect the dedicated flash programmer.

An on-board function that allows switching between normal operation mode and flash memory programming mode may be required in some cases.


<VPP pin>

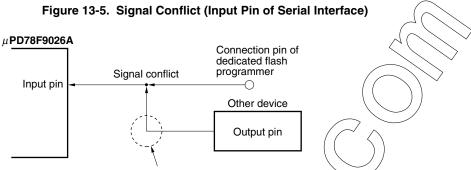
In normal operation mode, input 0 V to the VPP pin. In flash memory programming mode, a write voltage of 10.0 V (TYP.) is supplied to the VPP pin, so perform either of the following.

- (1) Connect a pull-down resistor (RVPP = 10 k Ω) to the VPP pin.
- (2) Use the jumper on the board to switch the VPP pin input to either the writer or directly to GND.

A VPP pin connection example is shown below.

Figure 13-4. VPP Pin Connection Example

<Serial interface pin>


The following shows the pins used by the serial interface

Serial Interface	Pins Used		
3-wire serial I/O	SI0, SO0, SCK0		
UART	RxD, TxD		
Pseudo 3-wire	P00, P01, P02		
	P40, P41, P42		

When connecting the dedicated lash programmer to a serial interface pin that is connected to another device onboard, signal conflict or abnormal operation of the other device may occur. Care must therefore be taken with such connections.

(1) Signal conflict

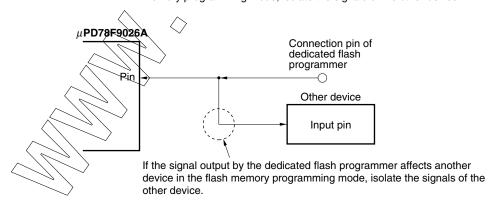
If the dedicated flash programmer (output) is connected to a serial interface pin (input) that is connected to another device (output), a signal conflict occurs. To prevent this, isolate the connection with the other device or set the other device to the output high impedance status.

In the flash memory programming mode, the signal output by another device and the signal sent by the dedicated flash programmer conflict; therefore, isolate the signal of the other device.

(2) Abnormal operation of other device

If the dedicated flash programmer (output or input) is connected to a serial interface pin (input or output) that is connected to another device (input), a signal is output to the device, and this may cause an abnormal operation. To prevent this abnormal operation, isolate the connection with the other device or set so that the input signals to the other device are ignored.

Figure 13-6. Abnormal Operation of Other Device

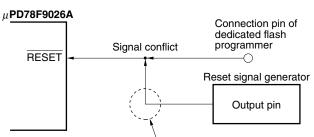

μ PD78F9026A

Connection pin of dedicated flash programmer

Other device

Input pin

If the signal output by the μ PD78F9026A affects another device in the flash memory programming mode, isolate the signals of the other device.



< RESET pin>

If the reset signal of the dedicated flash programmer is connected to the RESET pin connected to the reset signal generator on-board, a signal conflict occurs. To prevent this, isolate the connection with the reset signal generator.

If the reset signal is input from the user system in the flash memory programming mode, a normal programming operation cannot be performed. Therefore, do not input reset signals from other than the dedicated flash programmer.

Figure 13-7. Signal Conflict (RESET Pin)

The signal output by the reset signal generator and the signal output from the dedicated flash programmer conflict in the flash memory programming mode, so isolate the signal of the reset signal generator.

<Port pins>

When the μ PD78F9026A enters the flash memory programming mode, all the pins other than those that communicate with flash programmer are in the same status as immediately after reset.

If the external device does not recognize initial statuses such as the output high impedance status, therefore, connect the external device to V_{DD0}, V_{DD1}, V_{SS0}, or V_{SS1} via a resistor.

<Resonator>

When using the on-board clock, connect X1 and X2 as required in the normal operation mode.

When using the clock output of the flash programmer, connect it directly to X1, disconnecting the main resonator on-board, and leave the X2 pin open.

<Power supply>

To use the power output from the flash programmer, connect the V_{DD0} or V_{DD1} pin to VDD of the flash programmer, and V_{SS0} or V_{SS1} pin to GND of the flash programmer.

To use the on-board power supply, make connections in accordance with the normal operation mode. However, because the voltage is monitored by the flash programmer, be sure to connect VDD of the flash programmer.

13.1.4 Connection of adapter for flash writing

The following figure shows an example of recommended connection when the adapter for flash writing is used.

-⊚ VDD (2.7 to 5.5 ¥ -⊚ GND VDD2 (LVDD) VDD 6 GND Q 44 43 42 41 40 39 38 37 36 35 34 33 32 3 31 4 30 5 29 μPD78F9026A **2**8 6 7 27 8 26 9 25 10 11 12 13 14 15 16 17 18 19/20 21 22 6 0 \bigcirc ŞCK CLKOUT RESET VPP RESERVE/HS **FRASHWRITER** INTERFACE

Figure 13-8. Wiring Example for Flash Writing Adapter with 3-Wire Serial I/O

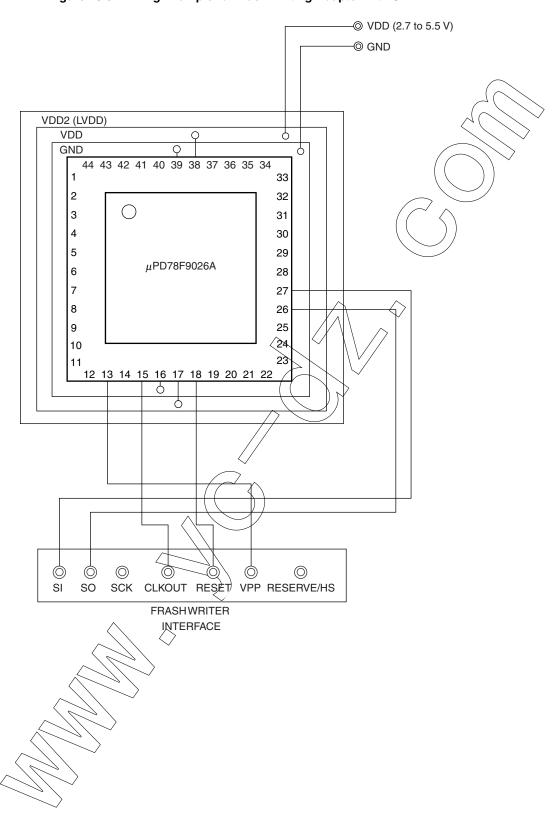


Figure 13-9. Wiring Example for Flash Writing Adapter with UART

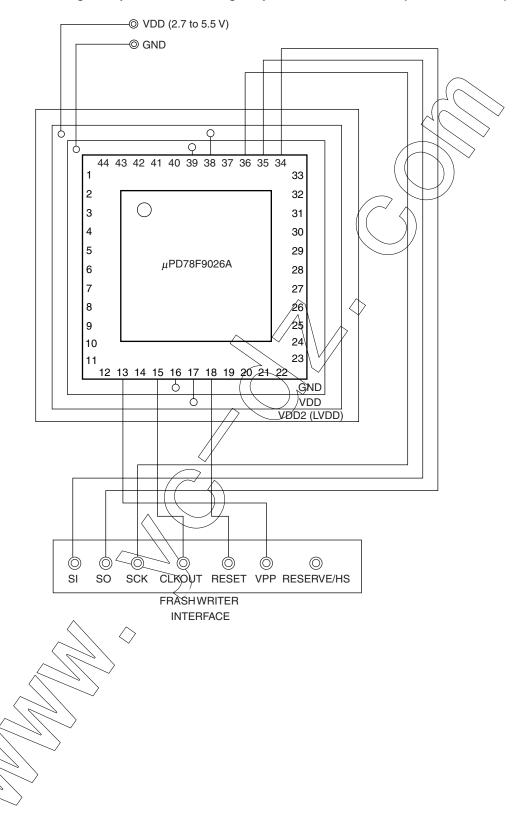


Figure 13-10. Wiring Example for Flash Writing Adapter with Pseudo 3-Wire (When P0 Is Used)

CHAPTER 14 INSTRUCTION SET

This chapter lists the instruction set of the μ PD789026 Subseries. For details of the operation and machine language (instruction code) of each instruction, refer to **78K/0S Series Instructions User's Manual (U11047E)**.

14.1 Operation

14.1.1 Operand identifiers and writing methods

Operands are written in the Operands column of each instruction in accordance with the writing method of the instruction operand identifier (refer to the assembler specifications for details). When there are two or more writing methods, select one of them. Uppercase letters and the symbols #, !, \$, and [] are keywords and are written as they are. Each symbol has the following meaning.

- #: Immediate data specification
- !: Absolute address specification
- \$: Relative address specification
- []: Indirect address specification

In the case of immediate data, write an appropriate numeric value or a label. When using a label, be sure to write the #, !, \$ and [] symbols.

For operand register identifiers r and rp, either functional names (X, A/C, etc.) or absolute names (names in parentheses in the table below, R0, R1, R2, etc.) can be used.

Table 14-1. Operand Identifiers and Writing Methods

Identifier	Witing Method
r rp sfr	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7) AX (RP0), BC (RP1), DE (RP2), HL (RP3) Special-function register symbol
saddr saddrp	FE20H to FF1FH Immediate data or label (even addresses only)
addr16 addr5	0000H to FFFFH Immediate data or label (only even addresses for 16-bit data transfer instructions) 0040H to 007FH Immediate data or label (even addresses only)
word byte bit	16-bit immediate data or label 8-bit immediate data or label 3-bit immediate data or label

Remark See Table 3-4 Special Function Registers for symbols of special function registers.

14.1.2 Description of "Operation" column

A: A register; 8-bit accumulator

X: X register

B: B register

C: C register

D: D register

E: E register

H: H register

L: L register

AX: AX register pair; 16-bit accumulator

BC: BC register pair

DE: DE register pair

HL: HL register pair

PC: Program counter

SP: Stack pointer

PSW: Program status word

CY: Carry flag

AC: Auxiliary carry flag

Z: Zero flag

IE: Interrupt request enable flag

NMIS: Flag indicating non-maskable interrupt servicing in progress

(): Memory contents indicated by address or register contents in parentheses

XH, XL: Higher 8 bits and lower 8 bits of 16-bit register

.: Logical product (AND)

v: Logical sum (OR)

∀: Exclusive logical sum (exclusive OR)

—: Inverted data

addr16: 16-bit immediate data or label

jdisp8: Signed 8-bit data (displacement value)

14.1.3 Description of "Flag" column

(Blank): Unchanged

0: Cleared to 0

1: Set to 1

x: Set/cleared according to the result

R: Previously saved value is restored

14.2 Operation List

Mnemonic	Operands	Bytes	Clocks	Operation		Flag
					Z	AC CY
MOV	r, #byte	3	6	$r \leftarrow \text{byte}$		\
	saddr, #byte	3	6	(saddr) ← byte	1	
	sfr, #byte	3	6	sfr ← byte		
	A, r Note 1	2	4	A ← r		\ \
	r, A Note 1	2	4	r ← A		<u> </u>
	A, saddr	2	4	$A \leftarrow (saddr)$		
	saddr, A	2	4	(saddr) ← A		
	A, sfr	2	4	$A \leftarrow sfr$		
	sfr, A	2	4	sfr ← A		
	A, !addr16	3	8	$A \leftarrow (addr16)$		
	!addr16, A	3	8	$(addr16) \leftarrow A$		
	PSW, #byte	3	6	PSW ← byte	×	× ×
	A, PSW	2	4	A ← P\$W		
	PSW, A	2	4	PSW ← A	×	× ×
	A, [DE]	1	6	$A \leftarrow (DE)$		
	[DE], A	1	6	(DE) ←A		
	A, [HL]	1	6	$A \leftarrow (HL)$		
	[HL], A	1	6	(HL) ← A		
	A, [HL+byte]	2	6	A ← (HL+byte)		
	[HL+byte], A	2	6 ((HL+byte) ← A		
XCH	A, X	1	4	A AX		
	A, r ^{Note 2}	2	6	$A \leftrightarrow r$		
	A, saddr	2	6	$A \leftrightarrow (saddr)$		
	A, sfr	2	6	$A \leftrightarrow sfr$		
	A, [DE]	1	8	$A \leftrightarrow (DE)$		
	A, [HL]	1	8	$A \leftrightarrow (HL)$		
	A, [HL+byte]	2	8	$A \leftrightarrow (HL+byte)$		

Notes 1. Except r = A.

2. Except $r = A_{X}$.

Remark One instruction clock cycle is one CPU clock cycle (fcpu) selected by the processor clock control register (PCC).

Mnemonic	Operands	Bytes	Clocks	Operation		Flag	J
					Z	AC	CY
MOVW	rp, #word	3	6	$rp \leftarrow word$			
	AX, saddrp	2	6	AX ← (saddrp)			
	saddrp, AX	2	8	(saddrp) ← AX		,	
	AX, rp ^{Note}	1	4	AX ← rp	>		
	rp, AX ^{Note}	1	4	rp ← AX			
XCHW	AX, rp ^{Note}	1	8	$AX \leftrightarrow rp$			
ADD	A, #byte	2	4	A, CY ← A + byte	×	×	×
	saddr, #byte	3	6	(saddr), CY ← (saddr) + byte	×	×	×
	A, r	2	4	A, CY ← A + r	×	×	×
	A, saddr	2	4	A, CY ← A + (saddr)	×	×	×
	A, !addr16	3	8	A, CY ← A + (addr16)	×	×	×
	A, [HL]	1	6	A, CY ← A + (HL)	×	×	×
	A, [HL+byte]	2	6	A, CY ← A + (HL+byte)	×	×	×
ADDC	A, #byte	2	4	$A, CY \leftarrow A + byte + CY$	×	×	×
	saddr, #byte	3	6	$(sader), CY \leftarrow (saddr) + byte + CY$	×	×	×
	A, r	2	4	$A, CY \leftarrow A + r + CY$	×	×	×
	A, saddr	2	4	A, CY — A + (saddr) + CY	×	×	×
	A, !addr16	3	8//	A, CY ← A + (addr16) + CY	×	×	×
	A, [HL]	1	6/	$A, CY \leftarrow A + (HL) + CY$	×	×	×
	A, [HL+byte]	2	⊋ 6 _∧	A, CY ← A + (HL+byte) + CY	×	×	×
SUB	A, #byte	2 (4	A, CY ← A – byte	×	×	×
	saddr, #byte	(3)	6	(saddr), $CY \leftarrow$ (saddr) – byte	×	×	×
	A, r	2	4	$A, CY \leftarrow A - r$	×	×	×
	A, saddr	2/	4	A, CY ← A − (saddr)	×	×	×
	A, !addr16	3	8	A, CY ← A − (addr16)	×	×	×
	A, [HL]	1	6	A, CY ← A − (HL)	×	×	×
	A, [HL+byte]	2	6	A, CY ← A − (HL+byte)	×	×	×

Note Only when rp = BC, DE, or HL.

Remark One instruction clock cycle is one CPU clock cycle (fcpu) selected by the processor clock control register (PCC).

Mnemonic	Operands	Bytes	Clocks	Operation		Flag	
					Z	AC	CY
SUBC	A, #byte	2	4	$A, CY \leftarrow A - byte - CY$	×	×	×
	saddr, #byte	3	6	(saddr), CY ← (saddr) – byte – CY	X	×	×
	A, r	2	4	$A, CY \leftarrow A - r - CY$	1	×	×
	A, saddr	2	4	$A, CY \leftarrow A - (saddr) - CY$	×	X	×
	A, !addr16	3	8	A, CY ← A − (addr16) − CY	X	× _	×
	A, [HL]	1	6	$A, CY \leftarrow A - (HL) - CY$	*	×	×
	A, [HL+byte]	2	6	A, CY ← A − (HL+byte) − CY	×	×	×
AND	A, #byte	2	4	$A \leftarrow A \land byte$	×		
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \land byte$	×		
	A, r	2	4	$A \leftarrow A \wedge r$	×		
	A, saddr	2	4	$A \leftarrow A \wedge (saddr)$	×		
	A, !addr16	3	8	$A \leftarrow A \land (addr16)$	×		
	A, [HL]	1	6	$A \leftarrow A \land (HL)$	×		
	A, [HL+byte]	2	6	A ← A ♠ (HL+byte)	×		
OR	A, #byte	2	4	$A \leftarrow A \lor byte$	×		
	saddr, #byte	3	6	(saddr) ← (saddr) ∨ byte	×		
	A, r	2	4	$A \leftarrow A \times r$	×		
	A, saddr	2	4	A ←∕A∕√ (saddr)	×		
	A, !addr16	3	8	A ✓ A ∨ (addr16)	×		
	A, [HL]	1	6	$A \leftarrow A \lor (HL)$	×		
	A, [HL+byte]	2	6 (A ← A ∨ (HL+byte)	×		
XOR	A, #byte	2 <	4	A ← A → byte	×		
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \forall byte$	×		
	A, r	2	A \	$A \leftarrow A \forall r$	×		
	A, saddr	2	4	A ← A → (saddr)	×		
	A, !addr16	3	8	$A \leftarrow A \lor (addr16)$	×		
	A, [HL]	<u>></u>	6	$A \leftarrow A \lor (HL)$	×		
	A, [HL+byte]	2	6	$A \leftarrow A \lor (HL+byte)$	×		

Remark One instruction clock cycle is one CPU clock cycle (fcpu) selected by the processor clock control register (PCG)

Mnemonic	Operands	Bytes	Clocks	Operation		Flag	J
					Z	AC	CY
CMP	A, #byte	2	4	A – byte	×	×	×
	saddr, #byte	3	6	(saddr) – byte	×	×	×
	A, r	2	4	A-r	X	×	×
	A, saddr	2	4	A – (saddr)	×	×	×
	A, !addr16	3	8	A – (addr16)	×	×	×
	A, [HL]	1	6	A – (HL)	×	×	×
	A, [HL+byte]	2	6	A – (HL+byte)	×	×	×
ADDW	AX, #word	3	6	$AX, CY \leftarrow AX + word$	×	×	×
SUBW	AX, #word	3	6	$AX, CY \leftarrow AX - word$	×	×	×
CMPW	AX, #word	3	6	AX – word	×	×	×
INC	r	2	4	r ← r + 1	×	×	
	saddr	2	4	(saddr) ← (saddr) + 1	×	×	
DEC	r	2	4	$r \leftarrow r - 1$	×	×	
	saddr	2	4	⟨(saddr) ← (saddr) −1/	×	×	
INCW	rp	1	4	rp rp 1			
DECW	rp	1	4	rp (- rp - 1)			
ROR	A, 1	1	2	$(CY, Ar \leftarrow A_0, A_{m-1} \leftarrow A_m) \times 1$			×
ROL	A, 1	1	2//	$(CY, A_0 \leftarrow A_7, A_{m+1} \leftarrow A_m) \times 1$			×
RORC	A, 1	1	2/	$(CY \leftarrow A_0, A_7 \leftarrow CY, A_{m-1} \leftarrow A_m) \times 1$			×
ROLC	A, 1	1		$(CY \leftarrow A_7, A_0 \leftarrow CY, A_{m+1} \leftarrow A_m) \times 1$			×
SET1	saddr.bit	3 (6	$(saddr.bit) \leftarrow 1$			
	sfr.bit	3	6	$sfr.bit \leftarrow 1$			
	A.bit	2	4	A.bit \leftarrow 1			
	PSW.bit	3/	6	PSW.bit ← 1	×	×	×
	[HL].bit	2) 10	(HL).bit \leftarrow 1			
CLR1	saddr.bit	3	6	$(\text{saddr.bit}) \leftarrow 0$			
	sfr.bit	3	6	$sfr.bit \leftarrow 0$			
	A.bit	2	4	A.bit \leftarrow 0			
	PSW.bit	3	6	PSW.bit ← 0	×	×	×
	[HL].bit	2	10	(HL).bit ← 0			
SET1	CY	1	2	CY ← 1			1
CLR1	CCY	1	2	CY ← 0			0
NOT1	ex/	1	2	$CY \leftarrow \overline{CY}$			×

Remark One instruction clock cycle is one CPU clock cycle (fcpu) selected by the processor clock control register (PCC).

Z AC CY	Mnemonic	Operands	Bytes	Clocks	Operation		Flag	
PC ← addr16, SP ← SP − 2						Z	AC	CY
PCH ← (00000000, addr5+1), PCH ← (00000000, addr5), SP ← SP − 2	CALL	!addr16	3	6				
RETI	CALLT	[addr5]	1	8	PC _H ← (00000000, addr5+1),			\supset
PUSH PSW	RET		1	6	$PC_H \leftarrow (SP+1), PC_L \leftarrow (SP), SP \leftarrow SP + 2$			>
POP	RETI		1	8		R	√R	R
POP PSW 1 4 PSW ← (SP), SP ← SP + 1 R R R R Inp 1 6 rph ← (SP+1), rpt ← (SP), SP ← SP + 2 R	PUSH	PSW	1	2	$(SP-1) \leftarrow PSW, SP \leftarrow SP - 1$			
mp		rp	1	4	$(SP-1) \leftarrow rpH, (SP-2) \leftarrow rpL, SP \leftarrow SP - 2$			
MOVW SP, AX 2 8 SP ← AX AX, SP 2 6 AX ← SP BR !addr16 3 6 PC ← addr16 \$addr16 2 6 PC ← PC + 2 + jdisp8 AX 1 6 PC ← PC + 2 + jdisp8 if CY = 1 BC \$saddr16 2 6 PC ← PC + 2 + jdisp8 if CY = 0 BZ \$saddr16 2 6 PC ← PC + 2 + jdisp8 if CY = 0 BZ \$saddr16 2 6 PC ← PC + 2 + jdisp8 if Z = 1 BNZ \$saddr16 2 6 PC ← PC + 2 + jdisp8 if Z = 0 BT saddr16 4 10 PC ← PC + 4 + jdisp8 if sdddr.bit) = 1 \$str.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if Str.bit = 1 A.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if str.bit = 0 \$str.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if str.bit = 0 \$str.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if Str.bit = 0 \$str.bit, \$addr16 4 10	POP	PSW	1	4	$PSW \leftarrow (SP), SP \leftarrow SP + 1$	R	R	R
AX, SP		rp	1	6	$rp_H \leftarrow (SP+1), rp_L \leftarrow (SP), SP \leftarrow SP + 2$			
BR	MOVW	SP, AX	2	8	$SP \leftarrow AX$			
\$addr16 2 6 PC ← PC + 2 + jdisp8 AX 1 6 PC ← PC + 2 + jdisp8 jt CY = 1 BC \$saddr16 2 6 PC ← PC + 2 + jdisp8 jt CY = 1 BNC \$saddr16 2 6 PC ← PC + 2 + jdisp8 if CY = 0 BZ \$saddr16 2 6 PC ← PC + 2 + jdisp8 if Z = 1 BNZ \$saddr16 2 6 PC ← PC + 2 + jdisp8 if Z = 0 BT \$saddr16 4 10 PC ← PC + 2 + jdisp8 if (saddr.bit) = 1 \$sfr.bit, \$saddr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 1 A.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if Sfr.bit = 1 BF \$saddr.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 0 \$sfr.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 0 \$A.bit, \$addr16 3 8 PC ← PC + 3 + jdisp8 if sfr.bit = 0 \$BNZ B, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 0 \$BNZ B, \$addr16 3 8 PC ← PC + 2 + jdisp8 if sfr.bit = 0 \$BNZ B, \$addr16 4 1		AX, SP	2	6	$AX \leftarrow SP$			
AX 1 6 PCH ← A, PCH ← X BC \$saddr16 2 6 PC ← PC + 2 + jdisp8 if CY = 1 BNC \$saddr16 2 6 PC ← PC + 2 + jdisp8 if CY = 0 BZ \$saddr16 2 6 PC ← PC + 2 + jdisp8 if CY = 0 BX \$saddr16 2 6 PC ← PC + 2 + jdisp8 if Z = 0 BX \$saddr16 2 6 PC ← PC + 2 + jdisp8 if Z = 0 BX \$saddr16 4 10 PC ← PC + 4 + jdisp8 if (saddr.bit) = 1 sfr.bit, \$addr16 4 10 PC ← PC + 3 + jdisp8 if sfr.bit = 1 A.bit, \$addr16 3 8 PC ← PC + 4 + jdisp8 if Str.bit = 1 PSW.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 0 Sfr.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 0 A.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 0 A.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 0 A.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 0 A.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 0 A.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if Str.bit = 0 BSW bit, \$addr16 4 10 PC ← PC + 3 + jdisp8 if Str.bit = 0 A.bit, \$addr16 4 10 PC ← PC + 3 + jdisp8 if Str.bit = 0 BSW bit, \$addr16 4 10 PC ← PC + 3 + jdisp8 if Str.bit = 0 C, \$addr16 2 6 B ← B - 1, then PC ← PC + 2 + jdisp8 if C ≠ 0 Saddr, \$addr16 2 6 B ← B - 1, then PC ← PC + 2 + jdisp8 if C ≠ 0 Saddr, \$addr16 2 6 C ← C - 1, then PC ← PC + 2 + jdisp8 if C ≠ 0 Saddr, \$addr16 3 8 IE ← 1 (Enable Interrupt) DI NOP 1 2 No Operation EI 3 6 IE ← 1 (Enable Interrupt) HALT 1 2 Set HALT Mode	BR	!addr16	3	6	PC ← addr16			
BC \$saddr16 2 6 PC ← PC + 2 + jdisp8 if CY = 1 BNC \$saddr16 2 6 PC ← PC + 2 + jdisp8 if Z = 0 BZ \$saddr16 2 6 PC ← PC + 2 + jdisp8 if Z = 0 BNZ \$saddr16 4 10 PC ← PC + 4 + jdisp8 if (saddr.bit) = 1 BT \$saddr.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 1 A.bit, \$addr16 3 8 PC ← PC + 4 + jdisp8 if pSW.bit = 1 BF \$saddr.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 0 A.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 0 A.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 0 A.bit, \$addr16 4 10 PC ← PC + 3 + jdisp8 if Sr.bit = 0 A.bit, \$addr16 4 10 PC ← PC + 3 + jdisp8 if PSW.bit = 0 BPSW.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if PSW.bit = 0 B ← B − 1, then PC ← PC + 2 + jdisp8 if C ≠ 0 Saddr, \$addr16 2 6 B ← B − 1, then PC ← PC + 2 + jdisp8 if C ≠ 0 <t< td=""><td></td><td>\$addr16</td><td>2</td><td>6</td><td>PC ← PC +2 + jdisp8 \ \</td><td></td><td></td><td></td></t<>		\$addr16	2	6	PC ← PC +2 + jdisp8 \ \			
BNC \$saddr16 2 6 PC ← PC + 2 + jdisp8 if CY = 0 BZ \$saddr16 2 6 PC ← PC + 2 + jdisp8 if Z = 0 BNZ \$saddr16 2 6 PC ← PC + 2 + jdisp8 if (saddr.bit) = 1 BT saddr.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if (saddr.bit) = 1 A.bit, \$addr16 3 8 PC ← PC + 4 + jdisp8 if Srr.bit = 1 PSW.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if Srr.bit = 0 PSW.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if Srr.bit = 0 A.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if Srr.bit = 0 PSW.bit, \$addr16 3 8 PC ← PC + 4 + jdisp8 if A.bit = 0 PSW.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if PSW.bit = 0 DBNZ B, \$addr16 2 6 B ← B - 1, then PC ← PC + 2 + jdisp8 if B ≠ 0 C, \$addr16 2 6 C ← C - 1, then PC ← PC + 2 + jdisp8 if C ≠ 0 saddr, \$addr16 3 8 (saddr) ← (saddr) - 1, then PC ← PC + 2 + jdisp8 if Saddr.bit) = 0 NOP 1		AX	1	6	$PCH \leftarrow A, PCt \leftarrow X$			
BZ \$saddr16 2 6 PC PC + 2 + jdisp8 if Z = 1 BNZ \$saddr16 2 6 PC PC + 2 + jdisp8 if Z = 0 BT \$saddr.bit, \$addr16 4 10 PC PC + 4 + jdisp8 if (saddr.bit) = 1 A.bit, \$addr16 4 10 PC PC + 4 + jdisp8 if sfr.bit = 1 A.bit, \$addr16 4 10 PC PC + 4 + jdisp8 if sfr.bit = 1 BF \$saddr.bit, \$addr16 4 10 PC PC + 4 + jdisp8 if PSW.bit = 1 BF \$saddr.bit, \$addr16 4 10 PC PC + 4 + jdisp8 if sfr.bit = 0 Sfr.bit, \$addr16 4 10 PC PC + 4 + jdisp8 if sfr.bit = 0 A.bit, \$addr16 3 8 PC PC + 4 + jdisp8 if sfr.bit = 0 PSW.bit, \$addr16 3 8 PC PC + 4 + jdisp8 if sfr.bit = 0 PSW.bit, \$addr16 3 8 PC PC + 4 + jdisp8 if sfr.bit = 0 PSW.bit, \$addr16 4 10 PC PC + 4 + jdisp8 if PSW.bit = 0 DBNZ B, \$addr16 2 6 B PSW.bit = 0 C, \$addr16 2 6 B PSW.bit = 0 Saddr, \$addr16 3 8 SPSW.bit = 0 PSW.bit, \$addr16 2 6 B PSW.bit = 0 Saddr, \$addr16 2 6 B PSW.bit = 0 NOP 1 2 No Operation EI 3 6 IE PSW.bit = 0 (Disable Interrupt) HALT 1 2 Set HALT Mode	ВС	\$saddr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } CY = 1$			
BNZ \$saddr16 2 6 PC ← PC + 2 + jdisp8 if Z = 0 BT saddr.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if (saddr.bit) = 1 Sfr.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 1 A.bit, \$addr16 3 8 PC ← PC + 4 + jdisp8 if A.bit = 1 PSW.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if PSW.bit = 1 BF saddr.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 0 Sfr.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 0 Sfr.bit, \$addr16 3 8 PC ← PC + 3 + jdisp8 if Sfr.bit = 0 A.bit, \$addr16 3 8 PC ← PC + 3 + jdisp8 if PSW.bit = 0 PSW.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if PSW.bit = 0 DBNZ B, \$addr16 4 10 PC ← PC + 4 + jdisp8 if PSW.bit = 0 C, \$addr16 2 6 B ← B − 1, then PC ← PC + 2 + jdisp8 if B ≠ 0 C, \$addr16 3 8 (saddr) ← (saddr) − 1, then PC ← PC + 2 + jdisp8 if C ≠ 0 Saddr, \$addr16 3 8 (saddr) ← (saddr) − 1, then PC ← PC + 3 + jdisp8 if (saddr) ≠ 0 NOP 1 2 No Operation EI 3 6 IE ← 1 (Enable Interrupt) DI 3 6 IE ← 0 (Disable Interrupt)	BNC	\$saddr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } CY = 0$			
BT	BZ	\$saddr16	2	6	PC / PC + 2 + jdisp8 if Z = 1			
sfr.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 1 A.bit, \$addr16 3 8 PC ← PC + 4 + jdisp8 if A.bit = 1 PSW.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if (saddr.bit) = 0 BF saddr.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 0 A.bit, \$addr16 3 8 PC ← PC + 4 + jdisp8 if A.bit = 0 PSW.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if PSW.bit = 0 PSW.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if PSW.bit = 0 DBNZ B, \$addr16 2 6 B ← B - 1, then PC ← PC + 2 + jdisp8 if B ≠ 0 C, \$addr16 2 6 C ← C - 1, then PC ← PC + 2 + jdisp8 if C ≠ 0 saddr, \$addr16 3 8 (saddr) ← (saddr) - 1, then PC ← PC + 3 + jdisp8 if (saddr) ≠ 0 NO Operation EI 3 6 IE ← 1 (Enable Interrupt) DI 3 6 IE ← 0 (Disable Interrupt) HALT 1 2 Set HALT Mode	BNZ	\$saddr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$			
A.bit, \$addr16 PSW.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if PSW.bit = 1 BF saddr.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if (saddr.bit) = 0 sfr.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if sfr.bit = 0 A.bit, \$addr16 3 8 PC ← PC + 4 + jdisp8 if sfr.bit = 0 PSW.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if A.bit = 0 PSW.bit, \$addr16 4 10 PC ← PC + 3 + jdisp8 if PSW.bit = 0 PSW.bit, \$addr16 4 10 PC ← PC + 4 + jdisp8 if PSW.bit = 0 PSW.bit, \$addr16 2 6 B ← B − 1, then PC ← PC + 2 + jdisp8 if B ≠ 0 C, \$addr16 2 6 C ← C − 1, then PC ← PC + 2 + jdisp8 if C ≠ 0 saddr, \$addr16 3 8 (saddr) ← (saddr) − 1, then PC ← PC + 3 + jdisp8 if (saddr) ≠ 0 NOP 1 2 No Operation EI 3 6 IE ← 1 (Enable Interrupt) DI HALT 1 2 Set HALT Mode	ВТ	saddr.bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if (saddr.bit) = 1			
PSW.bit, \$addr16		sfr.bit, \$addr16	4	10	PC + 4 + jdisp8 if sfr.bit = 1			
		A.bit, \$addr16	3 ,	8	PC + 3 + jdisp8 if A.bit = 1			
		PSW.bit, \$addr16	4	1,0	PC ← PC + 4 + jdisp8 if PSW.bit = 1			
A.bit, \$addr16	BF	saddr.bit, \$addr16	4	70/	$PC \leftarrow PC + 4 + jdisp8 \text{ if (saddr.bit)} = 0$			
PSW.bit, \$addr16		sfr.bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8 \text{ if sfr.bit} = 0$			
DBNZ B, \$addr16 2 6 B \leftarrow B $-$ 1, then PC \leftarrow PC + 2 + jdisp8 if B \neq 0 C, \$addr16 2 6 C \leftarrow C $-$ 1, then PC \leftarrow PC + 2 + jdisp8 if C \neq 0 saddr, \$addr16 3 8 (saddr) \leftarrow (saddr) $-$ 1, then PC \leftarrow PC + 3 + jdisp8 if (saddr) \neq 0 NOP 1 2 No Operation EI 3 6 IE \leftarrow 1 (Enable Interrupt) DI 3 6 IE \leftarrow 0 (Disable Interrupt) HALT 1 2 Set HALT Mode		A.bit, \$addr16	3	8	$PC \leftarrow PC + 3 + jdisp8 \text{ if A.bit} = 0$			
C, \$addr16		PSW.bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8 \text{ if PSW.bit} = 0$			
saddr, \$addr16 3 8 (saddr) \leftarrow (saddr) $-$ 1, then PC \leftarrow PC + 3 + jdisp8 if (saddr) \neq 0 NOP 1 2 No Operation EI 3 6 IE \leftarrow 1 (Enable Interrupt) DI 3 6 IE \leftarrow 0 (Disable Interrupt) HALT 1 2 Set HALT Mode	DBNZ	B, \$addr16	2/	6	$B \leftarrow B-1$, then PC \leftarrow PC + 2 + jdisp8 if B \neq 0			
$PC \leftarrow PC + 3 + j disp8 \text{ if } (saddr) \neq 0$ $NOP $		C, \$addr16	2	6	$C \leftarrow C - 1$, then $PC \leftarrow PC + 2 + jdisp8$ if $C \neq 0$			
EI 3 6 IE ← 1 (Enable Interrupt) DI 3 6 IE ← 0 (Disable Interrupt) HALT 1 2 Set HALT Mode		saddr, \$addr16	3	8				
DI 3 6 IE ← 0 (Disable Interrupt) HALT 1 2 Set HALT Mode	NOP		1	2	No Operation			
HALT 1 2 Set HALT Mode	EI		3	6	IE ← 1 (Enable Interrupt)			
	DI		3	6	IE ← 0 (Disable Interrupt)			
STOP 1 2 Set STOP Mode	HALT		1	2	Set HALT Mode			
	STOP		1	2	Set STOP Mode			

Remark One instruction clock cycle is one CPU clock cycle (fcpu) selected by the processor clock control register (PCC).

14.3 Instructions Listed by Addressing Type

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, INC, DEC, ROR, ROL, RORC, ROLC, PUSH, POP, DBNZ

		1	T.	T.	T.	1			T.	1			
2nd Operand	#byte	Α	r	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL+byte]	\$addr16		None
1st Operand										<	. (\searrow	
A	ADD		MOV ^{Note}	MOV	MOV	MOV	MOV	MOV	MOV	MOV		ROR	
	ADDC		XCH ^{Note}	XCH	XCH			XCH	XCH	х¢н	// `	ROL	
	SUB		ADD		ADD	ADD			ADD	ADD		RORC	
	SUBC		ADDC		ADDC	ADDC			ADDC	ADDC_		ROLC	
	AND		SUB		SUB	SUB			SUB/	SUB			
	OR		SUBC		SUBC	SUBC			SUBC	SUBC			
	XOR		AND		AND	AND			AND	AND			
	CMP		OR		OR	OR			OR	OR			
			XOR		XOR	XOR			XOR	XOR			
			CMP		CMP	CMP			CMP	CMP			
r	MOV	MOV						\	\Diamond				INC
							//\	$\backslash \backslash$	>				DEC
B, C											DBNZ		
sfr	MOV	MOV											
saddr	MOV	MOV					7	\rangle			DBNZ		INC
	ADD												DEC
	ADDC				,	// `							
	SUB				//	Y							
	SUBC												
	AND			/	\rightarrow								
	OR			(\sim	\							
	XOR			(()							
	CMP			\wedge		1							
!addr16		MOV	_										
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		убу	\triangle										
[HL+byte]		MON											_

Note Except r = A.

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

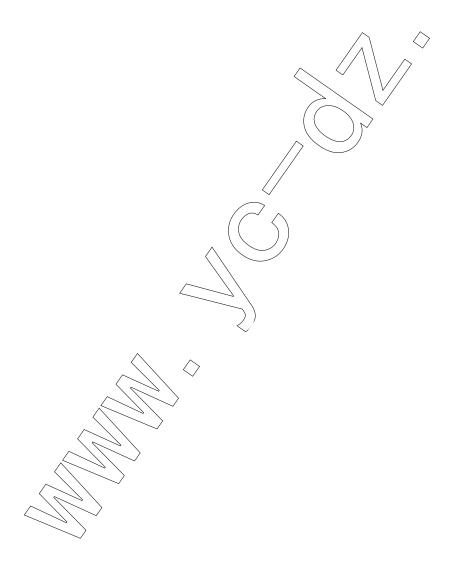
2nd Operand	#word	AX	rp ^{Note}	saddrp	SP	None
1st Operand						
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	
rp	MOVW	MOVW ^{Note}				INCW DECW PUSH POP
saddrp		MOVW				
SP		MOVW				

Note Only when rp = BC, DE, or HL.

(3) Bit manipulation instructions

SET1, CLR1, NOT1, BT, BF

instructions 1, BT, BF			Ť
2nd Operand 1st Operand	\$addr16	None	
A.bit	BT BF	SET1 CLR1	
sfr.bit	BF \	SET1 CLR1	
saddr.bit	BT BE	SET1 CLR1	
PSW.bit	BT BF	SET1 CLR1	
[HL].bit		SET1 CLR1	
CY		SET1 CLR1 NOT1	
<i>></i>			


(4) Call instructions/branch instructions

CALL, CALLT, BR, BC, BNC, BZ, BNZ, DBNZ

2nd Operand 1st Operand	AX	!addr16	[addr5]	\$addr16	
Basic instructions	BR	CALL BR	CALLT	BR BC BNC BZ BNZ	>
Compound instructions				DBNZ	

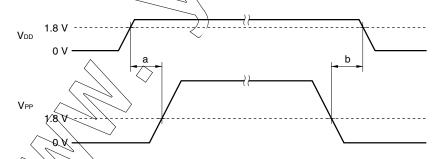
(5) Other instructions

RET, RETI, NOP, EI, DI, HALT, STOP

*

Absolute Maximum Ratings (TA = 25°C)

		0 ""	5 :: (\.\.\.
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.3 to +6.5	V
	VPP	μPD78F9026A only Note	-0.3 to +10.5	V
Input voltage	Vı		-0.3 to V _{DD} + 0.3	٧
Output voltage	Vo		-0.3 to V _{BD} + 0.3	٧
Output current, high	Іон	Per pin	(- 10	mA
		Total for all pins	- 30	mA
Output current, low	loL	Per pin	30	mA
		Total for all pins	160	mA
Operating ambient temperature	TA	In normal operation mode	−40 to +85	°C
		During flash memory programming	10 to 40	°C
Storage temperature	Tstg	Mask ROM version	-65 to +150	°C
		μPD78F9026A	-40 to +125	°C


Note Make sure that the following conditions of the V_{PP} voltage application timing are satisfied when the flash memory is written.

• When supply voltage rises

VPP must exceed VDD 10 μ s or more after VDD has reached the lower-limit value (1.8 V) of the operating voltage range (see a in the figure below).

· When supply voltage drops

V_{DD} must be lowered 10 μ s or more after V_{PP} falls below the lower-limit value (1.8 V) of the operating voltage range of V_{DD} (see b in the figure below).

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

System Clock Oscillator Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

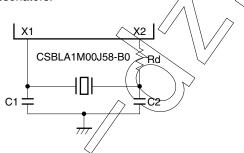
Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	X1 X2 C1	Oscillation frequency $(fx)^{Note 1}$	V _{DD} = Oscillation voltage range	1.0		5.0	MHz
		Oscillation stabilization time ^{Note 2}	After V _{DD} reaches the oscillation voltage range MIN.			4	ms
Crystal resonator	X1 X2 C1	Oscillation frequency $(fx)^{Note 1}$		1.0		5.0	MHz
		Oscillation stabilization time ^{Note 2}	V _{DD} = 4.5 to 5.5 V			10	ms
	111		$V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$			30	
External clock	X1 X2	X1 input frequency (fx) ^{Note 1}	\wedge	1.0		5.0	MHz
	$\stackrel{\downarrow}{\triangle}$	X1 input high-/low-level width (txH, txL)		85		500	ns
	X1 X2	X1 input frequency (fx) ^{Nofe} 1	V _{DQ} = 2.7 to 5.5 V	1.0		5.0	MHz
	OPEN	X1 input high-/low-level width (txH, txL)	V _{DD} = 2.7 to 5.5 V	85		500	ns

Notes 1. Indicates only oscillator characteristics \ Refer to AC Characteristics for instruction execution time.

2. Time required to stabilize oscillation after reset or STOP mode release. Use a resonator whose oscillation is stabilized within the oscillation stabilization wait time.

Caution

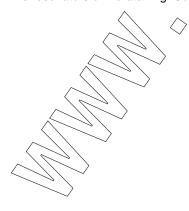
When using the system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.


- · Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

Recommended Oscillator Constant

(1) Ceramic resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$) (mask ROM version)

Manufacturer	Part Number	Frequency (MHz)	y Recommended Circuit Constant (pF)		Oscillation Voltage Range (VDD)		Remarks
			C1	C2	MIN.	MAX.	
Murata Mfg. Co., Ltd.	CSBLA1M00J58- B0 ^{Note}	1.0	100	100	2.2	5.5	$Rd = 4.7 k\Omega$
TDK	CCR4.19MC3	4.19	-	-	2.0	5.5	On-chip capacitor
	FCR4.19MC5		-	-		'	On-chip capacitor
	CCR5.0MC3	5.0	-	-	2.0	5.5	On-chip capacitor
	FCR5.0MC5		_	_			on-chip capacitor


Note A limiting resistor (Rd = $4.7 \text{ k}\Omega$) is required when CSBLA1M00J58-B0 (1.0 MHz) manufactured by Murata Mfg. Co., Ltd. is used as the ceramic resonator (see the figure below). This is not necessary when using one of the other recommended resonators.

Caution

The oscillator constant is a reference value based on evaluation in specific environments by the resonator manufacturer. If the oscillator characteristics need to be optimized in the actual application, request the resonator manufacturer for evaluation on the implementation circuit. Note that the oscillation voltage and oscillation frequency merely indicate the characteristics of the oscillator. Use the internal operation conditions of the μ PD78902x within the specifications of the DC and AC characteristics.

Remark The resonators of Murata Mfg. Co., Ltd. other than the above are currently under evaluation.

(2) Ceramic resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$) (μ PD78F9026A)

Manufacturer	Part Number	Frequency (MHz)	· · · ·		Oscillatio Range	_	Remarks
			C1	C2	MIN.	MAX.	
Murata Mfg. Co.,	CSBLA1M00J58-B0	1.0	100	100	2.3	5.5	_
Ltd.	CSBFB1M00J58-R1					(
	CST2.00MG	2.0	-	-	2.4	5.5	On-chip capacitor
	CSTLS2M00G56-B0				2.0	5.5	
	CSTCC2M00G56-R0				2.1	5.5	
	CSTLS4M00G53-B0	4.0					
	CSTCR4M00G53-R0				2.0	5 .5	
	CSTLS4M19G53-B0	4.194			2.1	5.5	
	CSTCR4M19G53-R0				2.0	5.5	
	CSTLS4M91G53-B0	4.915			2.2	5.5	
	CSTCR4M91G53-R0			\wedge	2.1	5.5	
	CSTLS5M00G53-B0	5.0		//\	2.2	5.5	
	CSTCR5M00G53-R0			$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	2.1	5.5	

Caution

The oscillator constant is a reference value based on evaluation in specific environments by the resonator manufacturer. If the oscillator characteristics need to be optimized in the actual application, request the resonator manufacturer for evaluation on the implementation circuit. Note that the oscillation voltage and oscillation frequency merely indicate the characteristics of the oscillator. Use the internal operation conditions of the μ PD78F9026A within the specifications of the DC and AC characteristics.

DC Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V) (1/2)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Output current, high	Іон	Per pin				-1	mA
		Total for all pins				-15	mA
Output current, low	lol	Per pin				10	mA
		Total for all pins				80 (mA
Input voltage, high	V _{IH1}	P00 to P07, P10 to P17,	V _{DD} = 2.7 to 5.5 V	0.7V _{DD}		NDD(v
		P21, P51 to P53	$V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$	0.9V _{DD}		Vop	V
	V _{IH2}	P20, P22, P3 <u>0 to P3</u> 2, P	40 V _{DD} = 2.7 to 5.5 V	0.8V _{DD}		VDD	\bigvee \bigvee
		to P47, P50, RESET	$V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$	0.9V _{DD}		VDD	V
	V _{IH3}	X1, X2	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	V _{DD} - 0.5		V _{DD}	V
			$V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$	V _{DD} - 0.1	(('	V DD	V
Input voltage, low	VIL1	P00 to P07, P10 to P17,	V _{DD} = 2.7 to 5.5 V	0		0.3V _{DD}	V
		P21, P51 to P53	$V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$	0		0.1V _{DD}	V
	V _{IL2}	P20, P22, P30 to P32, P	40 V _{DD} = 2.7 to 5.5 V	0		0.2V _{DD}	V
		to P47, P50, RESET	V _{DD} = 1.8 to 5.5 V	<u> </u>	\Diamond	0.1V _{DD}	V
	VIL3	X1, X2	V _{DD} = 4.5 to 5.5 V	/\\o _		0.4	V
			V _{DD} = 1.8 to 5.5 V	\\0//		0.1	V
Output voltage,	Vон	V _{DD} = 4.5 to 5.5 V, Iон = -	–1 mA	VD -1.0			V
high		V _{DD} = 1.8 to 5.5 V, Iон = -	–100 μΑ	V _{DD} - 0.5			V
Output voltage, low	Vol	V _{DD} = 4.5 to 5.5 V, I _{OL} = 3	10 mA			1.0	V
		$V_{DD} = 1.8 \text{ to } 5.5 \text{ V}, \text{ IoL} = 4.0 \text{ V}$	400 μΑ			0.5	V
Input leakage	ILIH1	VIN = VDD	ins other than X1 and X2			3	μΑ
current, high	ILIH2	X	(1, X2			20	μΑ
Input leakage	ILIL1	V _{IN} = 0 V	rins other than X1 and X2			-3	μΑ
current, low	ILIL2	X	(1, x 2			-20	μΑ
Output leakage current, high	Ісон	Vout = VDD				3	μΑ
Output leakage current, low	Ісос	Vout = 0 V				-3	μΑ
Software pull-up resistor	R	VIN = 0 V		50	100	200	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V) (2/2)

Parameter	Symbol	Condition	ons	MIN.	TYP.	MAX.	Unit
Supply currentNote 1	I _{DD1}	5.0 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		1.3	2.5	mA
(mask ROM		operating mode	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$		0.26	0.45	mA
version)			$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 3}}$		0.14	0.30	mA
	I _{DD2}	5.0 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		0.41	0.85	mA
		HALT mode	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$		0.16 (0.35	> mA
			$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 3}}$		0.07	0.15	mA
	IDD3	STOP mode	V _{DD} = 5.0 V±10%		0.1	1.0	μΑ
			V _{DD} = 3.0 V±10%		0.05	5.0	μΑ
			T _A = 25°C		0.05	3.0	μΑ
			V _{DD} = 2.0 V±10%		0.05	3.0	μΑ
Supply currentNote 1	I _{DD1}	5.0 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$)4,0	15.0	mA
(μPD78F9026A)		operating mode	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 3}}$		1.0	5.0	mA
		(C1 = C2 = 22 pF)	$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 3}}$		0.8	3.0	mA
	I _{DD2}	5.0 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		0.8	5.0	mA
		HALT mode	V _{DD} = 3.0 V±10% Note 3	\Diamond	0.5	2.5	mA
		(C1 = C2 = 22 pF)	VDD = 2.0 V±10% Note 3	\wedge	0.3	1.0	mA
	IDD3	STOP mode	VDR = 5.0 V±10%		0.1	30	μΑ
			VDD = 3:0 V±10%		0.05	10	μΑ
			$V_{DD} = 2.0 \text{ V} \pm 10\%$		0.05	10	μΑ

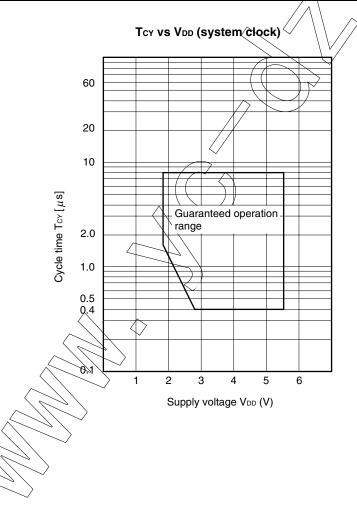
Notes 1. The current flowing to the ports (including the current flowing through the on-chip pull-up resistors) is not included.

- 2. High-speed mode operation (when the processor clock control register (PCC) is set to 00H)
- 3. Low-speed mode operation (when PCC is set to 02H)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Flash Memory Write/Erase Characteristics

(TA = 10 to 40°C, VDD = 1.8 to 5.5 V, in 5.0 MHz crystal oscillation operating mode)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Write current ^{Note} (VDD pin)	IDDW	When V _{PP} supply voltage = V _{PP1}			18	mA
Write current ^{Note} (VPP pin)	Ірри	When VRP supply voltage = VPP1			22.5	mA
Erase current ^{Note} (VDD pin)	I FOE	When VPP supply voltage = VPP1			18	mA
Erase current ^{Note} (VPP pin)	TPRE	When VPP supply voltage = VPP1			115	mA
Unit erase time	ter		0.5	1	1	s
Total erase time	tera				20	s
Write count	\supset	Erase/write are regarded as 1 cycle	20	20	20	Times
V _{PP} supply voltage	V _{PP0}	In normal operation	0		0.2V _{DD}	V
	V _{PP1}	During flash memory programming	9.7	10.0	10.3	V

Note The current flowing to the ports (including the current flowing through the on-chip pull-up resistors) is not included.

AC Characteristics

(1) Basic operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	V _{DD} = 2.7 to 5.5 V	0.4		8	μs
(minimum instruction execution time)		V _{DD} = 1.8 to 5.5 V	1.6		8 (μs
TI0 input high-/low-	tтін, tті∟	V _{DD} = 2.7 to 5.5 V	0.1			μs
level width		V _{DD} = 1.8 to 5.5 V	1.8	(μs
TI0 input frequency	f⊤ı	V _{DD} = 2.7 to 5.5 V	0	(4	MHz
		V _{DD} = 1.8 to 5.5 V	0		275	kHz
Interrupt input high-/low-level width	tinth, tintl	INTP0 to INTP2	10			μs
RESET low-level width	trsL		10	\wedge		μs

(2) Serial interface 00 (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

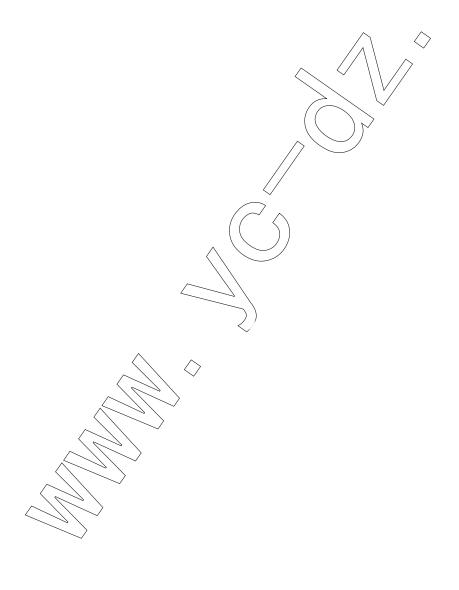
(i) 3-wire serial I/O mode (SCK0...Internal clock output)

Parameter	Symbol	Conditio	Conditions		TYP.	MAX.	Unit
SCK0 cycle time	tkcy1	V _{DD} = 2.7 to 5.5 V		800	,		ns
		V _{DD} = 1.8 to 5.5 V		3200	\langle		ns
SCK0 high-/low-	tkh1, tkL1	V _{DD} = 2.7 to 5.5 V		tkcy1/2 - 50			ns
level width		V _{DD} = 1.8 to 5.5 V		tkcy1/2 - 150			ns
SI0 setup time	tsıĸı	V _{DD} = 2.7 to 5.5 V		150		//	ns
(to SCK0↑)		V _{DD} = 1.8 to 5.5 V		500			ns
SI0 hold time	tksi1	V _{DD} = 2.7 to 5.5 V		400			ns
(from SCK0↑)		V _{DD} = 1.8 to 5.5 V		600			ns
SO0 output delay time from SCK0↓	tkso1	$R = 1 \text{ k}\Omega$, $C = 100 \text{ pF}^{\text{Note}}$	V _{DD} = 2.7 to 5.5 V	0		250	ns
unie nom sokov			V _{DD} = 1.8 to 5.5 V	0		1000	ns

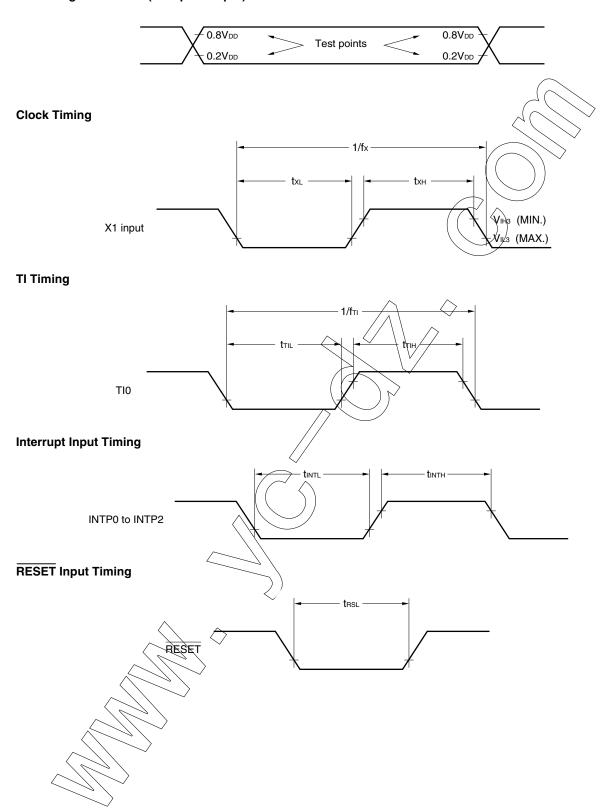
Note R and C are the load resistance and load capacitance of the \$00 output line, respectively.

(ii) 3-wire serial I/O mode (SCK0...External clock input)

Parameter	Symbol	Condition	\$	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy2	V _{DD} = 2.7 to 5.5 V		900			ns
		V _{DD} = 1.8 to 5.5 V		3500			ns
SCK0 high-/low-	t KH2, t KL2	V _{DD} = 2.7 to 5.5 V		400			ns
level width		V _{DD} = 1.8 to 5.5 V		1600			ns
SI0 setup time (to	tsik2	V _{DD} = 2.7 to 5,5V		100			ns
SCK0↑)		V _{DD} = 1.8 to 5.5 V		150			ns
SI0 hold time (from	tksi2	V _{DD} = 2.7 to 5.5 V		400			ns
SCK0↑)		V _{DD} = 1.8 to 5.5 V		600			ns
SO0 outpu <u>t delay</u> time from SCK0↓	tkso2	$R = 1 \text{ k}\Omega$, $C = 100 \text{ pF}^{\text{Note}}$	V _{DD} = 2.7 to 5.5 V	0		300	ns
ume nom SCKU↓		\Diamond	V _{DD} = 1.8 to 5.5 V	0		1000	ns

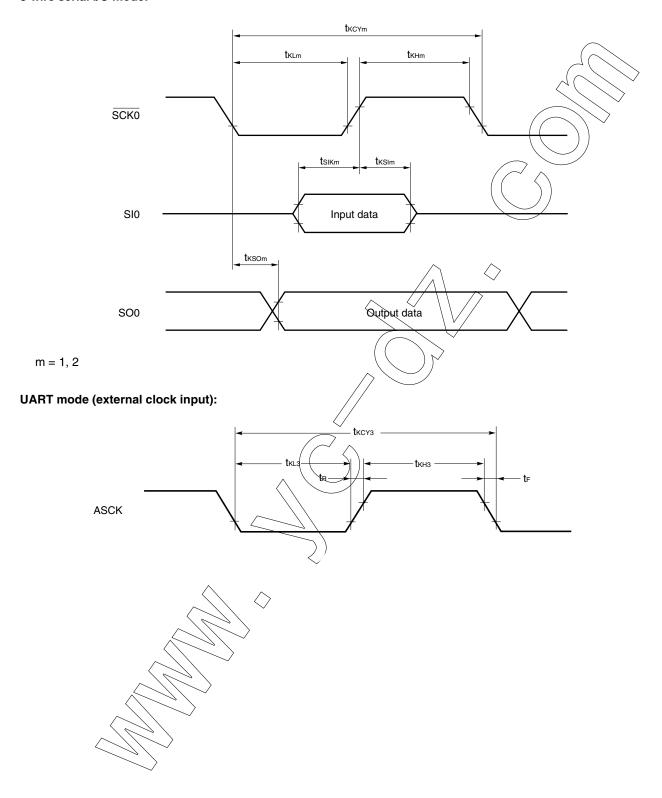

Note R and C are the load resistance and load capacitance of the SO0 output line, respectively.

(iii) UART mode (dedicated baud rate generator output)


Parameter Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate	V _{DD} = 2.7 to 5.5 V			78125	bps
	V _{DD} = 1.8 to 5.5 V			19531	bps

(iv) UART mode (external clock input)

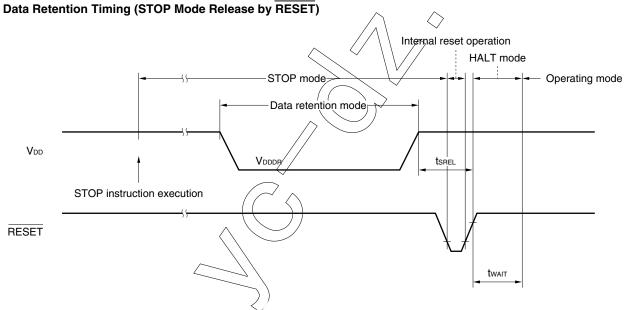
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tксүз	V _{DD} = 2.7 to 5.5 V	900			ns
		V _{DD} = 1.8 to 5.5 V	3500			ns
ASCK high-/low-	t кнз, t к∟з	V _{DD} = 2.7 to 5.5 V	400			ns
level width		V _{DD} = 1.8 to 5.5 V	1600		40	ns
Transfer rate		V _{DD} = 2.7 to 5.5 V			39063	bps
		V _{DD} = 1.8 to 5.5 V		(9766	bps
ASCK rise/fall time	tr, tr				1	μs



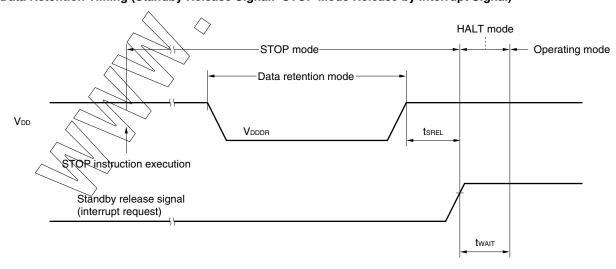
AC Timing Test Points (Except X1 Input)

Serial Transfer Timing

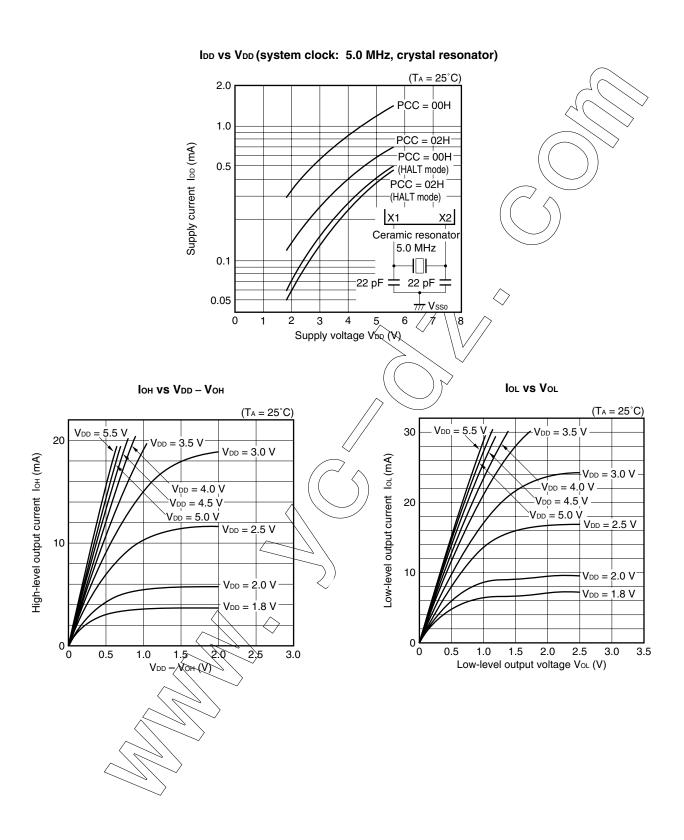
3-wire serial I/O mode:

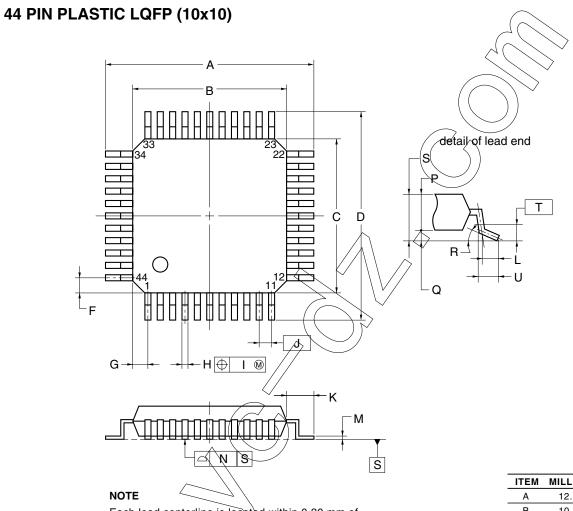


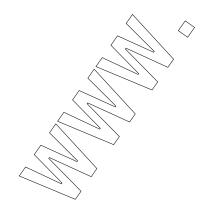
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.8		5.5	V
Release signal set time	tsrel		0	(μs
Oscillation	twait	Release by RESET		2 ¹⁵ /fx		ms
stabilization wait time		Release by interrupt		Note		ms

Note 2¹²/fx, 2¹⁵/fx, or 2¹⁷/fx can be selected according to the setting of bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register.


Remark fx: System clock oscillation frequency


Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)


CHAPTER 16 CHARACTERISTICS CURVES (MASK ROM VERSION)

Each lead centerline is located within 0.20 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	12.0±0.2
В	10.0±0.2
С	10.0±0.2
D	12.0±0.2
F	1.0
G	1.0
Н	$0.37^{+0.08}_{-0.07}$
I	0.20
J	0.8 (T.P.)
K	1.0±0.2
L	0.5
М	$0.17^{+0.03}_{-0.06}$
N	0.10
Р	1.4±0.05
Q	0.1±0.05
R	3°+4° -3°
S	1.6 MAX.
Т	0.25 (T.P.)
U	0.6±0.15
	S44GB-80-8ES-2

S44GB-80-8ES-

CHAPTER 18 RECOMMENDED SOLDERING CONDITIONS

The μ PD789026 Subseries should be soldered and mounted under the following recommended conditions.

For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

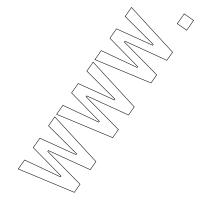

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

Table 18-1. Surface Mounting Type Soldering Conditions

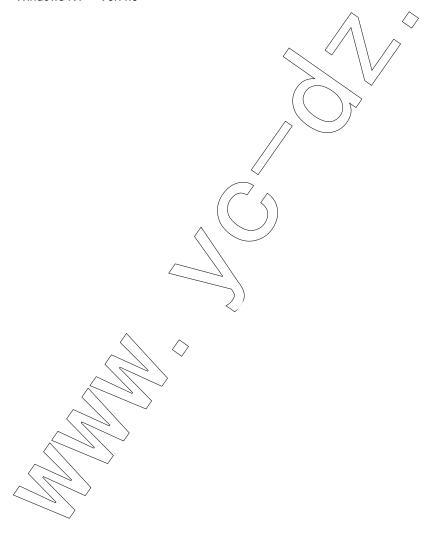
μPD789022GB-xxx-8ES: 44-pin plastic LQFP (10 x 10) μPD789024GB-xxx-8ES: 44-pin plastic LQFP (10 x 10) μPD789025GB-xxx-8ES: 44-pin plastic LQFP (10 x 10) μPD789026GB-xxx-8ES: 44-pin plastic LQFP (10 x 10) μPD78F9026AGB-8ES: 44-pin plastic LQFP (10 x 10)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less	IR35-00-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Tipre: 3 seconds max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for development of systems using the μ PD789026 Subseries. Figure A-1 shows development tools.


Support of PC98-NX Series

Unless specified otherwise, the products supported by IBM PC/AT™ compatibles can be used in PC98-NX Series. When using the PC98-NX Series, refer to the explanation of IBM PC/AT compatibles.

Windows

Unless specified otherwise, "Windows" indicates the following operating systems.

- Windows 3.1
- Windows 95, 98, 2000
- Windows NT™ Ver.4.0

Software package · Software package Language processing software Debugging software · Assembler package Integrated debugger · C compiler package System simulator · Device file · C library source fileNote 1 Control software Project Manager (Windows version only)Note 2 Host machine (PC or EWS) Interface adapter Power supply unit Flash memory writing environment In-circuit emulator Flash programmer **Emulation board** Flash memory writing adapter Flash memory Emulation probe Conversion socket or conversion adapter Target system

Figure A-1. Development Tools

Notes 1. C library source file is not included in the software package.

Project Manager is included in the assembler package.Project Manager is used only in the Windows environment.

A.1 Software Package

SP78K0S Software package	Software tools for development of the 78K/0S Series are combined in this package. The following tools are included. RA78K0S, CC78K0S, ID78K0S-NS, SM78K0S, and device files
	Part number: μSxxxxSP78K0S

Remark xxx in the part number differs depending on the operating system to be used.

 μ S \times \times SP78K0S

××××	Host Machine	os 💮	Supply Medium
AB17	PC-9800 series, IBM PC/AT	Japanese Windows	CD-ROM
BB17	compatibles	English Windows	

A.2 Language Processing Software

RA78K0S Assembler package	Program that converts program written in mnemonic into object codes that can be executed by microcontroller. In addition, automatic functions to generate a symbol table and optimize branch instructions are also provided. Used in combination with a device file (DE789026) (sold separately). <caution environment="" in="" pc="" used="" when=""> The assembler package is a DOS-based application but may be used in the Windows environment by using the Project Manager of Windows (included in the assembler package). Part number: #SXXXRA78KOS</caution>
CC78K0S C compiler package	Program that converts program written in C language into object codes that can be executed by nicrocontroller. Used in combination with an assembler package (RA78K0S) and device file (DF789026) (both sold separately). Caution when used in PC environment> The C compiler package is a DOS-based application but may be used in the Windows environment by using the Project Manager of Windows (included in the assembler package).
DF789026 ^{Note 1} Device file	Part number: μSxxxxCC78K0S File containing the information inherent to the device. Used in combination with the RA78K0S, CC78K0S, ID78K0S-NS, and SM78K0S (all sold separately). Part number: μSxxxxDF789026
CC78K0S-LNot-2 C library source file	Source file of functions for generating object library included in C compiler package. Necessary for changing object library included in C compiler package according to customer's specifications. Since this is a source file, its working environment does not depend on any particular operating system. Part number: µS×××CC78K0S-L

Notes 1. DF789026 is a common file that can be used with RA78K0S, CC78K0S, ID78K0S-NS, and SM78K0S.

2. CC78K0S-L is not included in the software package (SP78K0S).

Remark ×××× in the part number differs depending on the host machine and operating system to be used.

 μ S××××RA78K0S μ S××××CC78K0S

xxxx	Host Machine	os	Supply Medium
AB13	PC-9800 series, IBM PC/AT compatibles	Japanese Windows	3.5-inch 2HD FD
BB13		English Windows	
AB17		Japanese Windows	CD-ROM
BB17		English Windows	
3P17	HP9000 series 700 [™]	HP-UX [™] (Rel. 10.10)	
3K17	SPARCstation™	SunOS [™] (Rel. 4.1.4),	\bigcap
		Solaris [™] (Rel. 2.5.1)	

 μ S××××DF789026 μ S××××CC78K0S-L

			/ / \ \	
-	××××	Host Machine	_	Supply Medium
	AB13	PC-9800 series,	Japanese Windows	3.5-inch 2HD FD
	BB13	IBM PC/AT compatibles	English Windows	
	3P16	HP9000 series 700	HR-UX (Ref. 10.10)	DAT
	3K13	SPARCstation /	SunOS (Rel. 4.1.4),	3.5-inch 2HD FD
	3K15		Solaris (Rel. 2.5.1)	1/4-inch CGMT

A.3 Control Software

Project Manager	Control software created for efficient development of the user program in the Windows
	environment. User program development operations such as editor startup, build, and
	debugger startup can be performed from the Project Manager.
	<caution></caution>
	The Project Manager is included in the assembler package (RA78K0S).
	The Project Manager is used only in the Windows environment.

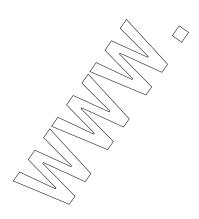
A.4 Flash Memory Writing Tools

Flashpro III (FL-PR3, PG-FP3) Flashpro IV (FL-PR4, PG-FR4) Flash programmer	Dedicated flash programmer for microcontrollers incorporating flash memory
FA-44GB-8ES Flash memory writing adapter	Adapter for writing to flash memory and connected to Flashpro III or Flashpro IV. FA-44GB-8ES: For 44-pin plastic LQFP (GB-8ES type)

Remark The FL-PR3, FL-PR4, and FA-44GB-8ES are products made by Naito Densei Machida Mfg. Co., Ltd. (TEL +81-45-475-4191).

A.5 Debugging Tools (Hardware)

IE-78K0S-NS In-circuit emulato	or	In-circuit emulator for debugging hardware and software of application system using 78K/0S Series. Supports integrated debugger (ID78K0S-NS). Used in combination with AC adapter, emulation probe, and interface adapter for connecting the host machine.
IE-78K0S-NS-A In-circuit emulato	or	The IE-78K0S-NS-A provides a coverage function in addition to the IE-78K0S-NS functions, thus enhancing the debug functions, including the tracer and timer functions.
IE-70000-MC-PS AC adapter	S-B	Adapter for supplying power from AC 100 to 240 V outlet.
IE-70000-98-IF-C Interface adapter	-	Adapter necessary when using PC-9800 series PC (except notebook type) as host machine (C bus supported)
IE-70000-CD-IF-/	· ·	PC card and interface cable necessary when using notebook PC as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C Interface adapter		Adapter necessary when using IBM PC/AT compatible as host machine (ISA bus supported)
IE-70000-PCI-IF-A Interface adapter		Adapter necessary when using personal computer incorporating PCI bus as host machine
IE-789026-NS-EM1 Emulation board NP-44GB-TQ NP-H44GB-TQ Emulation probe		Board for emulating the peripheral hardware inherent to the device. Used in combination with incircuit emulator.
		Cable to connect the in-circuit emulator and target system. Used in combination with the TGB-014SAP
Col	B-044SAP nversion apter	Conversion adapter to connect the NP-44GB-TQ or NP-H44GB-TQ and a target system board on which a 44-pin plastic LQFP (GB-8ES type) can be mounted


Remarks 1. The NP-44GB-TQ and NP-H44GB-TQ are products made by Naito Densei Machida Mfg. Co., Ltd. (TEL +81-45-475-4191).

2. The TGB-044SAP is a product made by TOKYO ELETECH CORPORATION.

For further information, contact: Daimaru Kogyo, Ltd.

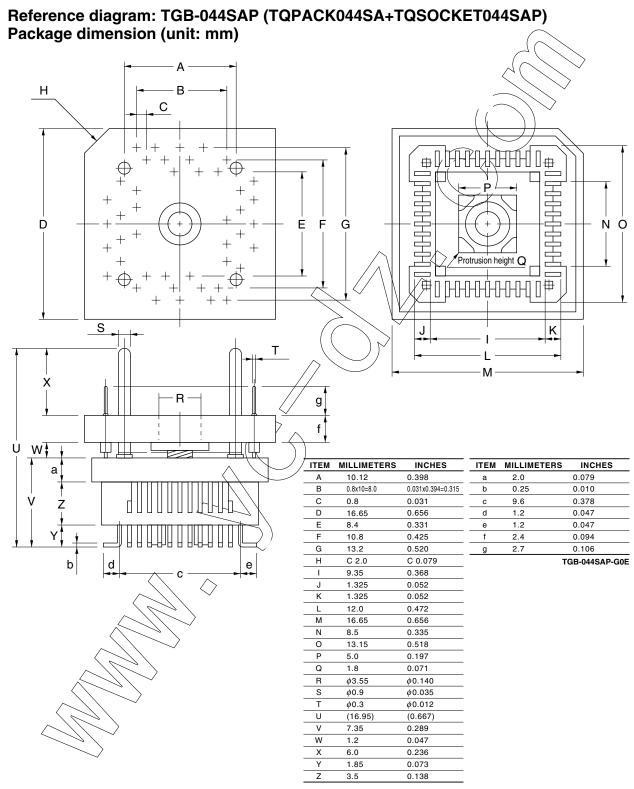
Tokyo Electronics Department (TEL +81-3-3820-7112)

Osaka Electronics Department (TEL +81-6-6244-6672)

A.6 Debugging Tools (Software)

ID78K0S-NS Integrated debugger	This debugger supports the in-circuit emulators IE-78K0S-NS and IE-78K0S-NS-A for the 78K/0S Series. The ID78K0S-NS is Windows-based software. It has improved C-compatible debugging functions and can display the results of tracing with the source program using an integrating window function that associates the source program, disassemble display, and memory display with the trace result. Used in combination with a device file (DF789026) (sold separately).	
	Part number: μSxxxxID78K0S-NS	
SM78K0S System simulator	This is a system simulator for the 78K/0S Series. The SM78K0S is Windows-based software. It can be used to debug the target system at C source level or assemble level while simulating the operation of the target system on the host machine. Using SM78K0S, the logic and performance of the application can be verified independently of hardware development. Therefore, the development efficiency can be enhanced and the software quality can be improved. Used in combination with a device file (DF789026) (sold separately).	
	Part number: µSxxxSM78K0S	
DF789026 ^{Note} Device file File containing the information inherent to the device. Used in combination with the RA78K0S, CC78K0S, ID78K0S-NS, and SM separately).		
	Part number: μSxxxxDF789026	

Note The DF789026 is a common file that can be used with RA78K0S, CC78K0S, ID78K0S-NS, and SM78K0S.

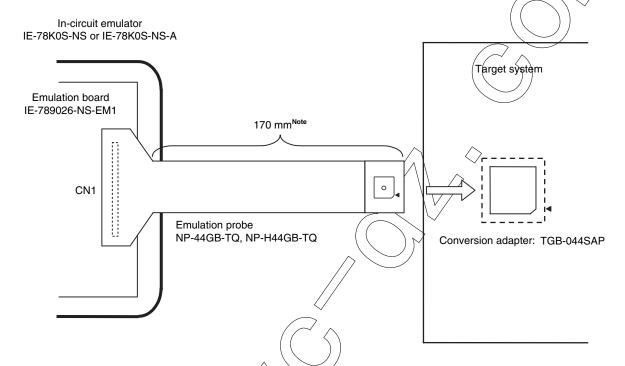

Remark xxxx in the part number differs depending on the operating system and supply medium to be used.

 μ S $\times\times\times$ ID78K0S-NS μ S $\times\times\times$ SM78K0S

	/\ \ \	/	
××××	Host Machine	OS	Supply Medium
AB13	PC-9800 series,	Japanese Windows	3.5-inch 2HD FD
BB13	IBM PC/AT compatibles	English Windows	
AB17		Japanese Windows	CD-ROM
BB17	^	English Windows	

A.7 Conversion Adapter (TGB-044SAP) Drawing

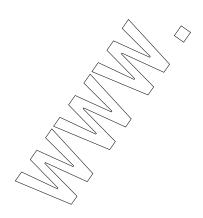
Figure A-2. TGB-044SAP Package Drawing (Reference)



note: Product by TOKYO ELETECH CORPORATION.

APPENDIX B NOTES ON TARGET SYSTEM DESIGN

Figures B-1 and B-2 show the conditions when connecting the emulation probe to the conversion adapter. Follow the configuration below and consider the shape of parts to be mounted on the target system when designing a system.


Figure B-1. Distance Between In-Circuit Emulator and Conversion Adapter

Note Distance when NP-44GB-TQ is used. When NP-H44GB-TQ is used, the distance is 370 mm.

Remarks 1. NP-44GB-TQ and NP-H44GB-TQ are products of Naito Densei Machida Mfg. Co., Ltd.

2. TGB-044SAP is a product of TOKYO ELETECH CORPORATION.

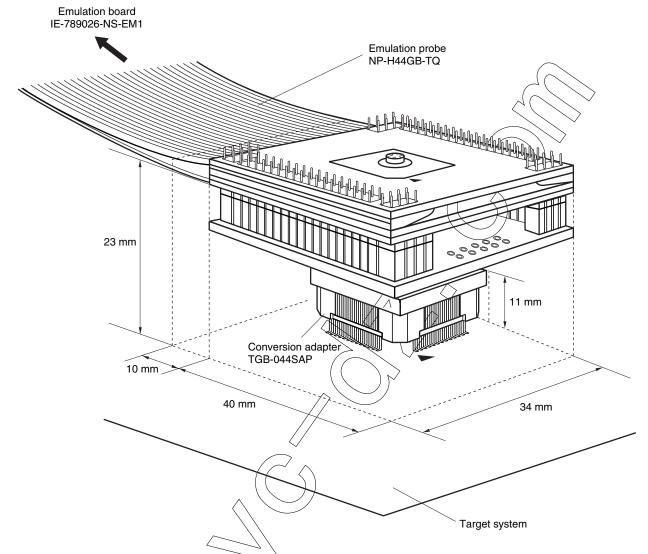
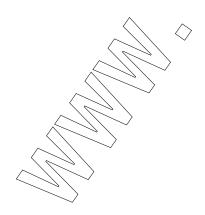
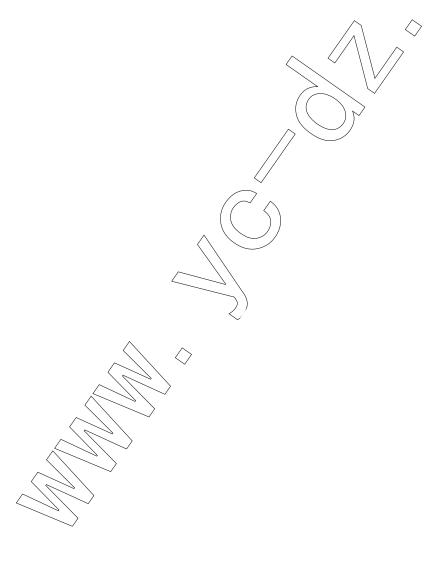



Figure B-2. Connection Condition of Target System (NP-H44GB-TQ)

Remarks 1. NP-H44GB-TQ is a product of Naito Densei Machida Mfg. Co., Ltd.

2. TGB-044SAP is a product of TOKYO ELETECH CORPORATION.

APPENDIX C REGISTER INDEX

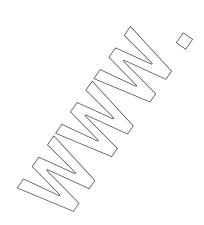

C.1 Register Name Index	
16-bit capture register 20 (TCP20)	88
16-bit compare register 20 (CR20)	
16-bit timer counter 20 (TM20)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
16-bit timer mode control register 20 (TMC20)	
8-bit compare register 00 (CR00)	((())
8-bit timer counter 00 (TM00)	100
8-bit timer mode control register 00 (TMC00)	101
[A]	^
Asynchronous serial interface mode register 00 (ASIM00)	120, 127, 129, 141
	.//122, 130
[B]	
Baud rate generator control register 00 (BRGC00)	123, 131, 142
[E]	
External interrupt mode register 0 (INTM0)	150
Interrupt mask flag register 0 (MK0) Interrupt mask flag register 1 (MK1)	149
Interrupt mask hag register 1 (WK1)	148
Interrupt request flag register 1 (IF1)	
[K]	
Key return mode register 00 (KRM00)	152
Oscillation stabilization time select register (OSTS)	161
[P]	
Port 0 (P0)	66
Port 1 (P1)	67
Port 2 (P2)	68
Port 3 (P3)	71
Port 4 (P4)	
Port 5 (P5)	
Port mode register 0 (PM0)	
Port mode register 1 (PM1)	
Port mode register 2 (PM2)	76

Port mode register 3 (PM3)	
Port mode register 4 (PM4) Port mode register 5 (PM5)	
Processor clock control register (PCC)	
Pull-up resistor option register (PUO)	
[R]	
Receive buffer register 00 (RXB00)	
[8]	
Serial operation mode register 00 (CSIM00)	119, 126, 128, 140
[T]	
Timer clock select register 2 (TCL2)	_
[W]	^ ^
Watchdog timer mode register (WDTM)	112

C.2 Register Symbol Index

[A]		
ASIM00:	Asynchronous serial interface mode register 00	_
ASIS00:	Asynchronous serial interface status register 00	122, 130
[B]		
BRGC00:	Baud rate generator control register 00	123, 131, 142
[C]		
CR00:	8-bit compare register 00	
CR20:	16-bit compare register 20	
CSIM00:	Serial operation mode register 00	
[1]		
IF0:	Interrupt request flag register 0	140
IF1:		
INTMO:	Interrupt request flag register 1 External interrupt mode register 0	148
	External interrupt mode register o	
[K]		
KRM00:	Key return mode register 00	152
[M]		
MK0:	Interrupt mask flag register 0	149
MK1:	Interrupt mask flag register 1	149
[0]		
OSTS:	Oscillation stabilization time select register	161
[P]		
P0:	Port 0	66
P1:	Port 0 Port 1	67
P2:	Port 2	68
P3:	Port 3	
P4:	Port 4	72
P5:	Port 5	
PCC:	Processor clock control register	80
PM0:	Port mode register 0	76
PM1:	Port mode register 1	76
PM2:	Port mode register 2	
PM3:	Port mode register 3	
PM4:	Port mode register 4	
PM5:	Port mode register 5	
PUO:	Pull-up resistor option register	77
[R]		
RXB00:	Receive buffer register 00	118
RXS00:	Receive shift register 00	118

[T] TCL2: TCP20: 16-bit capture register 2088 TM00: TM20: 16-bit timer counter 2088 TMC00: TMC20: 16-bit timer mode control register 2089 TXS00: Transmit shift register 00..... [W] WDTM: Watchdog timer mode register.....


APPENDIX D REVISION HISTORY

Here is the revision history of this manual. The "Applied to:" column indicates the chapters of each edition in which the revision was applied.

Edition	Revision from Previous Edition	Applied to:
Second edition	Change of μ PD789025 and μ PD789026 from "under development" to "developed"	Throughout
	Change of symbols in special function register list	CHAPTER 3 CPU ABCHITECTURE
	Change of asynchronous serial interface status register 00 so that it can be manipulated in 1-bit units	
	Change of block diagram of each port	CHARTER 4 PORT FUNCTIONS
	Change of symbols and flag names of 16-bit timer mode control register 20	CHAPTER 6 16-BIT TIMER COUNTER
	Change of symbols and flag names of 8-bit timer mode control register 00	CHAPTER 7 8-BIT TIMER/ EVENT COUNTER
	Change of symbols and flag names of serial operation mode register 00	CHAPTER 9 SERIAL
	Change of symbols and flag names of asynchronous serial interface mode register 00	INTERFACE 00
	Change of symbols and flag names of asynchronous serial interface status register 00	
	Change of asynchronous serial interface status register 00 so that 1-bit memory manipulation instruction can be used	
	Change of symbols and flag names of baud rate generator control register 00	
	Change of flag names of interrupt request flag register	CHAPTER 10 INTERRUPT
	Change of flag names of interrupt mask flag register	FUNCTIONS
	Change of symbols and flag names of key return mode register 00	
	Addition of description on timing of maskable interrupt request acknowledgement	
	Addition of setting with Flashpro II	CHAPTER 13 μPD78F9026
Third edition	Completion of development of μ PD789022 and μ PD789024	Throughout
	Change of part number from μ PD78F9026 to μ PD78F9026A	
	Deletion of following products: μPD789022CU-xxx, μPD789024CU-xxx	
	Addition of GB-8ES type package to all models	
	Change of circuit type and recommended connection of unused pins in processing of 100 circuit type of each pin and unused pins	CHAPTER 2 PIN FUNCTIONS
4	Addition of cautions on rewriting CR20 to operation as timer interrupt	CHAPTER 6 16-BIT TIMER
	Addition of cautions on rewriting CR00 to 8-bit compare register 00 (CR00)	CHAPTER 7 8-BIT TIMER/EVENT COUNTER
	Addition of description of operation to operation as interval timer	
	Addition of description of operation to operation as external event counter	
	Addition of description of operation to operation as square wave output	
	Change of flash programmer from Flashpro II to Flashpro III	CHAPTER 13 μPD78F9026A
	Addition of part number of MX78K0S to embedded software	APPENDIX B EMBEDDED SOFTWARE

(2/2)

Edition	Revision from Previous Edition	Applied to:
Fourth edition	Deletion of the following packages	Throughout
	42-pin plastic shrink DIP (CU type)	
	44-pin plastic QFP (GB-3BS-MTX type)	
	Modification of pin handling of VPP pin	CHAPTER 2 RIN FUNCTIONS
	Modification of description in 6.4.1 Operation as timer interrupt and 6.4.2 Operation as timer output	CHAPTER 6 16-BIT TIMER 20
	Modification of Caution on rewriting CR20 in 6.4.1 Operation as timer interrupt	
	Addition of 6.5 Notes on Using 16-Bit Timer 20	
	Modification of description of PE00 flag in Figure 9-5 Format of Asynchronous Serial Interface Status Register 00	CHAPTER 9 SERIAL INTERFACE 00
	Addition of description on reading receive data of UART	
	Addition of Caution in Figure 10-2 Format of Interrupt Request Flag Register	CHAPTER 10 INTERRUPT FUNCTIONS
	Overall revision of contents related to flash memory programming as 13.1 Flash Memory Characteristics	CHAPTER 13 μPD78F9026A
	Addition of electrical specifications	CHAPTER 15 ELECTRICAL SPECIFICATIONS
	Addition of characteristics curves for mask ROM version	CHAPTER 16 CHARACTERISTICS CURVES (MASK ROM VERSION)
	Addition of package drawing	CHAPTER 17 PACKAGE DRAWING
	Addition of recommended soldering conditions	CHAPTER 18 RECOMMENDED SOLDERING CONDITIONS
	Overall revision of contents of development tools Deletion of embedded software	APPENDIX A DEVELOPMENT TOOLS
	Addition of notes on target system design	APPENDIX B NOTES ON TARGET SYSTEM DESIGN

